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ABSTRACT

Digicomp Research conducted a review of Nebula (MIL~STD-1862A) for Rome
Air Development Certer. This is the final report of that effort.
4IL-STD-1862A is proposed as a major Instruction Set Architecture for
embedded military computer systems ir. the 1late 1980's and the 1990's.
Nebula was reviewed from a number of viewpoinﬁs by independent review-
ers. Part 1 of this report is a summary of the work performed and the
conclusions that were reached. Included in Part 1 are an executive sum-
mary, introduction, background, and a detailed summary of the conclu-
sions reached by the independent reviewers. Part 2 is a collectiorn of

the reports written by the reviewers.
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Section 1

EXECUTIVE SUMMARY

AREAS STUDIED
Based on a priority list provided by RADC, reviews of Nebula were per-

formed ir the following areas and are included in this report:

* pAdal Support

® Portability

*1/0

# JOVIAL Support

* Fault-Tolerance

* Virtualizability

* Support for Very High Level Languages, e.g. LISP, SAIL
# Dita base systems support

* Multiprocessing

A section 1is also 1included which contains Nebula problem areas which
arose in various discussions but which did not seem to fit into one of

the above areas.

1 Ada is a trademark of the U, S, Dept. of Defense {(Ada Joint Program
Office). ’

I-1.1




P A Nl R Nl Nl Ml A Al S S A R

GENERAL CONCLUSIONS AND RECOMMENDATIONS

YIL-STD-1862A, although being a sound 32-bit ISA in many respects, has
not reached a sufficient level of maturity to easily overcome deficien-
cies which could prove to have a greater impact in some Air Force appli-
cations than are desirable. This cornclusion is supported primarily by

concerns in the following areas:

1. Through lack of clarity, through insufficient specifica-
tion, and through explicit implementation dependencies,
there are many problem areas relative to software port-
ability. Although some portability issues arise due to
differences between Air Force and Army procuremert poli-
cies, some problems would still exist even if the Army's
policies were adopted by the Air Force.

2. Given Ada's position in the DoD standardization progr;ms.
Nebula architectural support of the Ada programming lan-
guage is inadequate in some respects. Features of Nebula
that were designed specifically for Ada or High-Order-
Languages of'ten do not support Ada well. Compilers which
attempt to use these Ada or HOL features are likely fo be
more complex than compilers targeted for traditional com-
puter architectures or compilers targeted for Nebula com-
puters which do not use the HOL features.

3. A number of the problem areas uncovered in the reviews

1-102
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were a result of the development process for Nebula. It
was felt that, due to the lack of development time,
insufficient consideration was given to the requirements
of operatirg systems and compilers. Rework may be
required as experience is gained from writing real soft-

ware for a Nebula machine.

To get from the present Nebula standard to one which is more closely
tailored to Air Force requirements, starting over from the beginning may
not be necessary. However, it is not sufficient to deal with the prob-
lems ir isolation and apply patches as difficulties arise. Sections of
Nebula should be redesigned for the attainment of specific, well defined

goals. In most cases, the existing approach should be used as a base,

SPECIFIC CONCLUSIONS AND RECOMMENDATIONS

In each of the areas studied there is a list of suggested changes.
These suggestions vary in emphasis from "highly desirable” to "sug-
gested" and must be reviewed based upon the importance of the particular
area in the view of the Air Force. For a summary of the recommenda-
tions, see Section 4, "Results of Independent Reviews of Nebula."

The following list consists of the suggestions (some are merely com-

ments) which have extensive impact on the architecture:

1. The Nebula Control Board should adopt the policy of

I-1.3
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"eontrolled unportability"® presented in the portability

report. Software visible implementation dependencies
should not proliferate; where appropriate, they should be
explicitly allowed. In that complete portability is
impossible (or the cost/benefit ratio is too high), devi-
ations from providirng complete portability in the stan-
dard should be known and expressly allowed. An attitude
of "controlled unportability" would provide documented
Justifications of deviations from complete portability
and would allow flexibility when needed.

As a document, MIL-STD-1862A is not sufficiently clear,
precise, or complete to be used as the definition of a
ISA Standard. Regardless of the changes that finally get
adopted in Nebula, the standard must be rewritten for
completeness and to avoid implementation dependencies
which will most certainly arise because of lack of clar-
ity and precision.

Since the DoD standardization plan calls for most pro-
grams run on Nebula to be written in Ada, the Air Force
would benefit if Nebula were better matched to Ada. In
particular:

* More support for Ada tasking is needed. A suggestion

is included in the report.

I-1.4
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* The procedure interface should provide more suitable
support for Ada procedures, particularly, support
should be ‘included for wuplevel addressing of parame-
ters.

* More support for run-time chécking would be very use-
ful. Two minor suggestions were made, but little work
was dore in this area.

4, . Problems with the procedure interface were discussed in
several reports. More access, either structured, 2 or
unstructured,3 should be allowed to the context stack.

5. The architecture is not virtualizable. While the ability
to run a virtual machine monitor was viewed as highly
desirable by the Computer Family Architecture evalua-
tior, 4 it evidently was not a goal of the Nebula design-
ers. This is rectifiable and changes are suggested to
make it virtualizable. Although there 1is already a use

for this feature,5 the Nebula Control Board should decide

2 By structured access we mean the addition of new instructions to give
controlled access to specific information in the context stack along
the lines of LPSW which. loads the value of the calling procedure's PSW
into a specified location.

3 By unstructured access we mean software visibility of the context
stack to the normal instructions for loadirng, storing, and performing
arithmetic and logical operations.

4 Burr, W. E., Fuller, S. H., Stone, H., Computer Family Architecture
Selection Committee - Final Report, Volume II - Selection of Candidate
Architectures and Initial Screening, ECOM-4527, September, 1977.

5 Statement of Work ~ Military Computer Family Operating System (MCFOS),
Request # DAABO7-82-Q-J109, Issued by Branch D, R&D Procurement Divi-

I-105
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if this functionality 1is indeed required and modify
Nebula if that use is justified.
6. Because of its memory management system, Nebula is not

particularly suited to be used as a general purpose

development system.

Nebula will not support demand paging.6

AREAS FOR FURTHER WORK
There are several areas of Nebula which were not studied and which need

to be investigated, namely:

1. The memory management system has been one of the most
controversial parts of Nebula because of: its segmenta-
tion approach, its failure to guarantee to the programmer
more than 16 segments in a map, and the absence of sup-
port for demand paging.

2. The IOC processor may need more processing capabilities
for applications such as data base management.

3. Ways to improve Nebula support for run-time checking of
constraint errors in Ada programs needs to be investi-
gated.

4, Some features of Nebula, in particular the memory

sion, U. S. Army Communications - Electronics Command, Fort Monmouth,
NJ.

6 This feature is also requested in the MCFOS Statement of Work.

I-1,6




management system, registers, and parameters should be
evaluated with respect to the impact that the possible

implemertation techniques have on the architecture.
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Section 2

INTRODUCTION

The Nebula architecture has both strengths and weaknesses. If this
report seems niggardly in its praise of strong points, it 1is partly
because they are good and do not need changing. The designers were
faced with the difficult problem of using proven technology while at the
same time producing an architecture which is competitive over the next
10-15 years. Nebula contains laudable features, both in creative use of
existing methods and in innovative approaches to problems. However, the
general emphasis of this report is on the shortcomings of Nebula, as

explained below.
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Nebula is proposed as a major architecture for embedded systems in the
late 1980's and 1990's. If adopted and accepted as a DoD-wide standard
with the same committment as Ada, Nebula may rapidly become frozen and
its current weaknesses could be felt through several generations of
hardware and software. Therefore, Nebula must be viewed with an espe-
cially critical, though constructive attitude.

The analogy between Nebula and Ada is instructive, They are respec-
tively the ISA and computer language for use in embedded computer sys-

tems, However, there was a competitive design process for Ada, and

Nebula did not go through that process. The lengthy design and review
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schedules afforded Ada were not given to Nebula. Although there were
pressing historical reasons for this shortened design and review pro-
cess, the effect is nonetheless observable in various weaknesses of the
Nebula design.

There is now a competitive effort to build an advanced developmer.t
prototype based on Nebula. However, this effort is to implement the
ISA, not to evolve the ISA itself. Advancing technology and the effects
of the competitive process will not be able to improve the ISA once it
is frozen. This lack of improvement 1is especially critical in areas
where the weaknesses affect software support (since architectural imple-
mentors will presumably not address such features).

Nebula is a strong and innovative architecture b& today's standards.
Yet, Nebula developers should not ignore the salient features of archi-
tectures evolving from today's commercial bases which are very likely to
be dominant when Nebula-conforming computers are being built in full-
scale production under the Army's MCF program. For example, by 1986 a
32-bit upgrade of the Motorola MC68000, with expanded memory architec-
ture, is likely to be well established in the marketplace. Intel's iAPX
432, which already exists, is strongly oriented toward Ada. The iAPX
432 also provides significant support for multiprocessing, fault toler-
ance, security and protection, garbage collection and scoping of vari-
ables.7 By 1986 a revision based on experience with the iAPX 432 could

be a superior alternative to Nebula, especially given Intel's evolution-

7 lZiegler, S., et al, "Ada for the Intel 432 Microcomputer," Computer,
Vol. 14, No. 6, June, 1981, pp. 47-56.
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ary approach to the market and 1its significant headstart. Also,

militarized implementations of a range of VAX processors may exist,

The major issue is what can and should be done to develop Nebula in
light of the future state of computing technology (while at the same
time retairing the low-risk design characteristics of the ISA). The
increased interdependence between hardware and software (especially with
operating systems and compilers) is one of the most important areas cur-
rently under active research and development 1in industry. In the case
of Nebula, this interdependence shows up in the procedure and task
interfaces, including especially the context stack, parameter-passing
mechanism, and exception handlng. These areas represent the least con-
servative of Nebula's features. They were the focus of considerable
debate (and frequent revision) during the Nebula design effort, and are
ofter cited within the Nebula Reviews as problem areas requiring further

analysis.

NEBULA REVIEWS

Several versions of Nebula were used during the process of the review
described below. References to "Nebula" in Part 1 refer to the draft
version of MIL-STD-1862A dated "TBD" issued approximately September 30,
1981. In Part 2, the beginning of each report states which version is
referenced -- most reports used the July 1, 1981 version of

MIL-STD~-1862A.
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The reviewers were asked to answer the followirg questions about ‘_{ﬂ¢:

Nebula with respect to their area:

* What are the problems with the ISA in the area?
* What must'be done to work around these problems? ::t~ 8
* 4Jhat can't be done because of the problems?

* How car. the architecture be changed to solve the problem?

¥ dhat features of the ISA provide good support in the area?

ORGANIZATION OF THIS REPORT

This report is organized as follows:

i. The first part of this report contains summaries of the «\{[~.‘
work performed and the conclusions and recommendations j:fﬂgi
resulting from that work. The sections found in this SRR

part are:

a. An Executive Summary which briefly describes the
work performed and the conclusions reached.

b. An Introduction to the rest of the Report.

e¢. A Background section which includes chapters on: the ;:11.;
history of the efforts surrounding Nebula; a summary ;';.;n
of the goals of various organizations for which V
Nebula i3 expected to be a significant advance; a

short technical overview of the Nebula architecture. : ;}:
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d. A section cortaining the results of the indeperdent
reviews of Nebula. This section includes chapters
on: Nebula's strong features, support for programs
written irn Ada, writing portable programs for
Nebula, problem areas and suggested changes, ard
areas requiring further study.

2. The second part of the report is a collection of the

final reports submitted by the independent reviewers.
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Section 3

BACKGROUND

HISTORY AND PERSPECTIVE OF NEBULA

Introduction

This background information on Nebula (MIL-STD~1862A) 1is presented to
provide a perspective of the environment, and the evolution of the
Nebula architecture. Topics covered include: DoD and related standard-
ization efforts; early efforts to obtain a standard architecture; and

the planned implementations of the architecture.

Standardization efforts

The DoD, the Army, and the Air Force are faced with: escalating costs
for hardware and software; problems with life cycle support and mainte-
nance; lengthy acquisition time; and overuse of o0ld technology. To meet
these problems, the military services are developing standardization
plans which rely heavily on: the use of High Order Languages (HOLs) with
the Ada language being used for most systems, the use of a few Instruc-
tion Set Architectures (ISAs) for most systems, and a control policy for
acquisition and implementation of the architectures. Nebula 1is to be
the major ISA for the Army and the 32-bit ISA for the Air Force. The
Air Force already has a 16-bit ISA (MIL-STD-1750A) which it has been

using primarily for Avionics.
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Military Computer Family (MCF) Program

The development of Nebula grew out of a joint .Army/Navy effort to obtain
a software compatible family of military computers based on a common
architecture, known as the Computer Family Architecture or CFA.8 9 10 11
12 13 The Naval Research Laboratory and CENTACS of the Army Electronics
Command (at different times known as ECOM, CORADCOM, and CECOM) analysed
basic approaches and needs. The preferred approach was to obtain a com-
mercial architecture, if possible. Several architectures were studied,
and the three finalists were: DEC PDP-11, IBM System 370, and Interdata
8/32, The DEC PDP-11 architecture was finally chosen after a lengthy

evaluation process.

8 Burr, W, E., Coleman, A. H., Smith, W. R., "Overview of the Military
Computer Family Architecture Selection," 1977 National Computer Con-
ference Proceedings, Volume 46, AFIPS Press, Montvale, NJ, ppP.
131-137.

9 Fuller, S. H., Stone, H, S., Burr, W. E., "Initial Selection and

Screening of the CFA Candidate Computer Architectures,” 1977 National

Computer Conference Proceedings, Volume 46, AFIPS Press, Montvale, NJ,
pp. 139-146.

10 Fuller, S. H., Shaman, P., Lamb, D., "Evaluation of Computer Archi-
tectures Via Test Programs," 1977 National Computer Conference Pro-
ceedings, Volume 46, AFIPS Press, Montvale, NJ, pp. 147-160.

11 Barbaceci, M., Siewiorek, D., Gordon, R., Howbrigg, R., Zuckerman, S.,
"An Architectural Research Facility - ISP Descriptions, Simulation,
Data Collection," 1977 National Computer Conference Proceedings, Vol-
ume 46, AFIPS Press, Montvale, NJ, pp. 161=173.

12 Wagner, J., Leiblein, E., Rodriguez, J., Stone, H., "Evaluation of
the Software Bases of the Candidate Architectures for the Military
Computer Family," 1977 National Computer Conference Proceedings, Vol-
ume 46, AFIPS Press, Montvale, NJ, pp. 175=183.
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Orne of the criteria for the architecture was that it should be gov-
errment owned. In the course of negotiation with Digital Equipment Cor-
poratior for the rights to the PDP-11 architecture, DEC announced a new
32-bit architecture called the VAX. The government tried, unsuccess-
fully, to secure the rights to this new architecture. Due to congres-
sional pressure, the Navy was forced to launch development of its own
program, Navy Embedded Computer System (NECS)14 and this Navy program is
reportedly very similar in philosophy and approach to the MCF program.15

With the failure to obtain ownership of a commerical architecture,
the MCF program had the responsibility for developing a new architec-
ture. Ir 1979, Carnegie~Mellon University (CMU) began development of a
new ISA which had as its major result the appearance of Nebula
(MIL-STD-1862) in May, 1980.

The MCF Program now has four contracts (with IBM, GE/TRW, Raytheon,
and RCA) to build Advanced Development models16 to be completed in

1983.17 After evaluation, two contractors will be chosen to produce Full

13 Cornyrn, J. J., Smith, W. R., Coleman, A. H., Svirsky, W. R., "Life
Cycle Cost odels for Comparing Computer Family Architectures," 1977
National Computer Conference Proceedings, Volume 46, AFIPS Press,
Montvale, NJ, pp. 185-199.

14 Martin, Edith W., "The Military Computer Family, Part I: A Documen-
tary,™ Military Electronics/Countermeasures, March, 1979, pg. 75.

15 Martir, Edith W., "The Military Computer Family, Part III: The
Issues," Military Electrorics/Countermeasures, May, 1979, pg. T4.

16 Statement of Work - Advanced Development of the Military Computer
Family, DAAK80-80-Q-1594, U, S, Army Communications - Research and
Development Command, Fort Monmouth, NJ, August, 1980,

17 At present, the family comprises three members: a 3 MIPS, 2 Mbyte
super-mini version (AN/UYK-U1 described by CR-TS-0034-001); a 500
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Scale Development Models. In 1985, a design will be selected. A final
contractor will be chosen after a competitive bidding process, ard a
S5-year production contract will be let. At this same time, the ISA will
be reviewed and contracts for new Advanced Development models will be

let which will allow for different implementations based on new technol-

ogy.

Air Force Involvement with Nebula

In the last half of 1980, the Air Force joined the Army in joint control
of the Nebula standard. A joint control structure was established which
corsisted of a Nebula Executive Board (NEB), a Nebula Control Board
(NCB), and a Technical Review Committee for the NCB known as the "Tiger
Team." The Air Force plans to actively pursue a standardization progranm
using its MIL-STD-1750A ISA and JOVIAL J73 programming language while
evaluating proposed applications for use with Nebula and Ada when they
become available. The shift across the architectures and languages is
expected to be gradual and mainly be 1limited to new systems or applica-

tions, or to major upgrades/modifications of existing systems.

XIPS, 1 Mbyte microcomputer version and a 500 KIPS, 128K single board
version (AN/UYK-49 described by CR~CS-0035-001);
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t , GOALS OF THE NEBULA ISA
= Introduction
fﬁ This section presents the role of the Nebula Instruction Set Architec-
f.{: ture (MIL-STD-1862A) in fulfilling the goals of the Air Force Systenm
?Z Command ~ High Level Systems Standardization (AFSC-HLSS) Program. A
f: good starting point for a history of attempts to adopt a standard
s instruction set architecture is the Army's early efforts with the Mili-
tary Computer Family (MCF) Program.
. The MCF Program
B Problems experienced by DoD with rapid and uncontrolled proliferation of
computing systems caused the initiation of the MCF Program. Good dis-
fu' cussions of the problems and other motivations for the MCF Program are

. contaired in references.13 19 20 21 22 Briefly, the problems that cur-

rently exist are:

o 7 * Lack of portable applications software

18 Martin, Edith W., "The Military Computer Family, Part I: A Documen-

tary,"” Military Electronics/Countermeasures, March, 1979.
o 19 Martin, Edith W., "The Military Computer Family, Part II: The
;} Approach,”™ Military Electronics/Countermeasures, April, 1979.
:i: 20 Martin, Edith W., "The Military Computer Family, Part III: The
® Issues," Military Electronics/Countermeasures, May, 1979.
j; 21 Shohat, Murray and Edith W. Martin, "MCF Part IV: The Opportunities,”
L Military Electronics/Countermeasures, June, 1979,
s
s 22 Brooks, et al, "MCF VI: Box vs. Module Standardization," Military

. Electronics/Countermeasures, August, 1979.
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% Continual retraining of programmers on new machines, languages, L "‘

arnd programming environments

® Lack of good program development environments

# Difficulty in training and retaining technicians

* Little programming in HOL's

* 01d technology hardware with attendant repair problems

* Little or no competition throughout life cycle of system

#® Great difficulty in upgrading systems

Ihe goal of the MCF Program 1is standardization of a computer family

architecture ard modularization to achieve:

Software transportability
# Meaningful competition between suppliers
* Multiple suppliers

® Graceful technology insertion

Reduced life cycle costs

Discussions with industry have resulted 1in reasonable agreement in

attempts to achieve these goals by standardization across four levels:

* Hardware Communication Protocols
* Higher Order Languages (e. g. Ada)
* Common hardware functionality at the box level

# Standard instruction set architectures

1-3.6
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The above list is ranked in order, from highest to lowest acceptability.
There were a number of types of standardization on which no general
agreement could be reached (e.g. standardization at the module level

rather than the box level). 23

Instruction Set Architecture Goals

The ISA standardization effort has in itself generated a number of

goals. These goals are that MIL-STD-1862A should be:

* Implementable on a family of machines with a wide range of
processing power

* An efficient host for implementing MCF HOL's (e. g. Ada)

® An efficient base for implementing MCF communications hard-
ware protocols (e. g. 1553B, RS-=232)

* A good target for implementation of a wide range of applica-
tions (e. g. real-time systems, data base systems, CCCI
applications).

* Reduce the visibility of the hardware to the software,.2i

23 Martin, Edith W., "The Military Computer Family, Part III: The
Issues,"” Military Electronics/Countermeasures, May, 1979.

24 Szewerenko, L., Dietz, W., Ward, F., "Nebula, A New Architecture and

its Relationship to Computer Hardware," Computer, Vol. 14, No. 2,
February, 1981.
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AFSC - HLSS Program Goals

The Air Force System Command (AFSC) has a High Level System Stardardiza-
tion (HLSS) Program to expand the standardization of computer resources
across Command programs. The goal of this program is to implement the
efficient execution of Ada and very high level programming languages in

a standard way by 1990. The expected benefits of this program are:

* Reduced life cycle software costs.

* Reduced logistics ard training support.

* Both application and support computer programs may be used
on multiple projects.

* Use of standard ISA's to facilitate hardware competition.

* Increased portability of computer programs.

The last goal, that of program portability, plays a central role in many
of the other goals. In particular, life cycle costs and use of computer
programs on multiple projects are tied very closely to program portabil-
ity. To a certain extent, logistics and training support are also
affected by portability. Part 2 of this report contains a paper which

discusses portability issues surrounding the Nebula standard.
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OVERVIEW OF NEBULA (MIL-STD-1862A)

Purpose

The following paragraphs present the major points of the Nebula Instruc-

D —~

Dind)
0

tion Set Architecture (ISA). They are intended for the newcomer to

Nebula and assume no prior knowledge of the ISA, The goal 1is rot to
! . defire the ISA in detail but to give ar overall picture of the architec-
ture and to provide a background for understanding the reports in Part

2.

¢ Basic Concepts

The Nebula ISA is a 32-bit general register architecture with byte
- addressable memory. Instructions are sequences of bytes with the first
; byte specifying the operation and the succeeding byteg specifying the

operands. An operand specifier is a sequence of one or more bytes spec-
: ifying the location and size of an operand. The operand specifiers pro-~

vide a variety of addressing modes available in multiple forms of vary-
5 ing compactness. Data types such as logical, real and integer are
: available in several sizes: integers and logicals may be 8, 16, or 32

bits; reals may be 16, 32 or 64 bits. Operands of a given instruction
' may be of mixed sizes. Size conversions are performed automatically.

The architecture provides a procedure-based control structure. Pro-

cedures may be invoked by calls, interrupts, traps, supervisor handled

exceptions, vectored supervisor service calls, or as independent tasks.
[ - The procedure mechanism provides for parameter passing and maintenance CmeY

of control linkages. Each procedure has a procedure context containing

. B
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its own register set of up to 16 registers (one of which is subsumed by
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the program courter), its parameters, its PSW, and the state of its
exceptior handler, Stack frames for procedure contexts are allocated on
stacks called context stacks which are protected from any access other
than through the procedure interface. Nebula instructions use virtual
addresses that are translated using a hardware supported memory mappirng
scheme. The segmented virtual memory provides at least 16 .:riable size
Segments mapped through an associative memory segment table which con-
tairs access rights and relocation amount. One half of the virtual

address space is accessible only to the supervisor.

Addressing Operands

Nebula accesses operands by operand specifiers. Each 1is evaluated to
give the 1location and size of an operand. Nebula provides about 8
addressing modes depending on how one groups the operand specifiers.
These modes are as follows:

% Literal Mode specifies an instruction stream constant.

* Register HMode designates a register in the current procedure

context.
#* Indirect Register Mode designates a register (other than

register 0) which contains the address of the operand.

* Register Indexed Mode designates a register and a signed

¢ ’ displacement. The signed displacement is added to the con-
;' tents of the register to form the address of the operand.
2
-
L
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* Absolute Mode provides the 32-bit absolute address of the

operard.

Parameter Addressirng Mcdes Aallow access to parameters
defined by the caller of the procedure. Access is by giving
the rumber of the desired parameter in the parameter list.
Short Parameter HMode ericodes the parameter number (in the
rarge 1 = 7) in the operand specifier. Extended Short
Parameter Mode allows access to all 255 possible parameters
by using an additional byte to ii.dicate the parameter number
wher the Short Parameter Mode 1irdicates access to parameter
0. Long Parameter “ode sets the number from another operand
specifier embedded in its specifier. Because an operand
specifier may be embedded in another, this mode is called a
"compound" mode (only noncompound specifiers may be embed-
ded in a compound mode's specifier). For example in Long
Parameter Mode, the parameter number may be described as the
contents of a register by a Register 'ode operand specifier;
this mode is necessary if the parameter number is not known
at compile-time.

Unscaled Index Mode is another compound addressing mode.
The operand specifier includes two operand specifiers for
the irdex and the base. The base and index specifiers are
evaluated and combined to determine the address of the oper-

and.

I-3. 11
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#% Scaled Index Mode is similar to Unscaled Index Mode. It is

also compound and includes index and base specifiers. How-
ever, the index is scaled before adding it to the base. The
scaling is performed by multiplying the index by the size of
the operand (1, 2, 4, or 8 bytes) as indicated in the oper-

and specifier for the base.

A Procedure's Local Context

Unlike conventional architectures, Nebula has no common set of general
purpose registers accessible to all procedures; each procedure has its
owr. set of general purpose registers. When a procedure is invoked, a
frame (procedure context) for that procedure is allocated in memory on a
context stack. This frame contains the general purpose registers for
that procedure, the PSW of the procedure, its program counter, informa-
tion about any parameters it was passed and optionally the address of an
exception handler. A procedure may have up to 16 local registers. Reg-
ister O is the program counter for the procedure.

The integrity of the context stack 1is maintained by not allowing
access to its contents except through the procedure interface. This
interface includes the procedure-call mechanism, parameter and register
addressing modes, exception handling instructions, and program counter
manipulation. Access to other procedure contexts is restricted to read-

ing the PSW of the caller, and access to any register passed as a param-

eter.
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Ir addition to the information on a procedure's context stack, vari-
ous fixed characteristics of the procedure are described by a procedure
descriptor located at the procedure's entry point, This descriptor
tells whether the procedure has a variable or fixed number of parame-
ters, the number of parameters (if the number is fixed), and the rnumber
of local registers the procedure is to have. The Processor 3Status Word
(PSW) also contains information about the current procedure. It
includes the number of registers accessible to the procedure, the number
of parameters the procedure was passed, and other state information.
The context for each procedure includes the PSW which defines its capa-
bilities.

The architecture supports two active context stacks corresponding to
the Kernel Context Pointer and the Task Context Pointer. The hardware
remembers which context stack is active; the current stack is changed by
traps, interrupts, and tasking instructions. Each task in the system
has assocliated with it a unique context which is in turn associated with
the Task Context Pointer, An instruction is provided to change the

active task context stack (LTASK).

Procedure Invocation

Procedures are invoked by executing calls. A call specifies an entry
address and a parameter list., The parameter list consists of a sequence
of operand specifiers. The procedure invocation establishes a corre-
spondence between the operand specifiers in the parameter list of the

caller and the parameter addressing modes of the called procedure.

I-30 13
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Within the called procedure, a parameter is accessed by an operand spec-
ifier using a parameter addressing mode.

The operand specifiers of the caller are evaluated to yield a loca-
tion and size. The corresponding parameter addressing modes are bound
to this location and size information. Thus all parameters are call-by-
reference.

The manner of specifying the entry address depends upon the type of
call. Normal calls specify the entry address as an operand. Supervisor
calls ard unimplemented instructions obtain the address by indexing into
protected tables of addresses. Interrupts and traps are assigned fixed
vectors.

Ar OPEX trap is defined for instructions that are not implemented in
hardware or microcode; the trap may pass control to a software procedure
which ther. simulates the instruction. The difference between a micro-
code implemented instruction and an unimplemented instruction code that
invokes a software procedure performing the same operation is not detec-~

table in the object code of the machine.

Memory Management

Nebula instructions use virtual addresses. These are translated to
physical addresses by the memory management system. The memory manage-
ment system divides the virtual address space of the supervisor and each
task into a number of segments of variable size. Each segment begins at
a variable address in virtual address space described by a table in

physical memory. Segments may be protected against various types of

I-3c ‘M
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access (see the next section on protection codes) and may be declared
accessible only by processes which are executing in privileged mode.
The supervisor can directly access the segments of the current task sub-
ject to these restrictions,

The virtual address space is divided 1into two halves. One of these
halves is accessible only when the processor is in supervisor mode.
There are two memory maps available for address translation, a supervi-
sor map and a user map. An address 1in the supervisor half of the vir-
tual address space uses the supervisor map for address translation.
Addresses in the user half use the user map.

These maps are pointed to by the Supervisor Map Pointer Register and
the User Map Pointer Register respectively. Each register éontains. in
addition to the map pointer, a bit indicating whether or not relocation

is to be performed.
map-pointer-register ::= < address~of-map, relocate >

Each memory map is a sequence of 3segment descriptors. Each segment
descriptor contains a virtual address bound and a signed relocation
amount ., The sequence is ordered so that the virtual address bound in
each descriptor is strictly greater than that of the preceding segment

descriptor.
memory-map ::= < segment-descri,...,Segment-descrk >
segment-descr ::= < virtual-addr-bound, reloc-amt >

An interpretive semantics for address translation is as follows.

I-3o15
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1. Giver an address, determine in what half of virtual mem-

ory it lies and select the appropriate map pointer regis-
ter.

2. If the register indicates that no relocation is to be
performed, the physical address is the same as the vir-
tual address.

3. If relocation is to be performed refer to the map indi-
cated by the map pointer register.

y, Select the appropriate segment descriptor in the map by
comparing the virtual address (upper) bound of the seg-~
ment descriptor with the given virtual address.

5. The physical address 1is then the sﬁm of the virtual

address and the relocation amount.

Protection

The description thus far has ignored protection features and checking of
access rights. To understand the protection mechanism, it is necessary
to elaborate on the structure of the architecture.

The processor 1is always in exactly one of supervisor or task mode;
also, 1it is always in exactly one of privileged or unprivileged mode.
The PSW determines what combination of these modes is in effect.

The map pointer registers contain a protection flag (in addition to
the map address and relocate flag already described). The protection

flag indicates whether or not access checking is to be performed. Seg-

1—3.16




ment descriptors contain a privilege flag and a protection key (in addi-

tior. to the virtual address bound and relocation amount).

map-pointer-register ::= < address-of-map,
relocate,

protect >

segment-descr ::= < virtual-addr-bound,
relocation-amount,
privilege-flag,

protection-key >

Taking protection into account, address translation proceeds as follows.

1. Giver. an address, determine in what half of virtual mem-
ory it lies and select the appropriate map pointer regis-
ter.

2. If it is in the supervisor half and the processor is in
user mode a trap {(Invalid.supv) occurs.

3. If the register indicates that no relocation is to be
performed, the physical address is the same as the vir-
tual address.

4, If either the relocation or protection bit of the map
pointer register is set, select the appropriate segment
descriptor in the map by comparing the virtual address
(upper) bound of the segment descriptor with the given
virtual address.

I-3.17
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If protection is enabled, perform checking for privilege
violations and access violations. A privilege violation
takes place 1if the segment descriptor is marked privi-
leged and the processor is not in privileged mode. An
access violation takes place if the protection key of the
segment descriptor does not allow the type of access
being performed.

If no protection violations occurred, relocation is per-
formed by summing the virtual address and the signed

relocation amount.

following access restrictions are available as protection keys:
No Access -- any access shall cause a trap.

Instruction Access Only -- instruction fetch and reading of
literals is allowed.
Data Read Only -- reading of operands is allowed.
Instruction or Read Access -- instruction fetch, 1literal
fetch, and reading of operands is allowed.

Data Read/Write -- reading and writing of operands is
allowed.

Context Only -— access as part of a context stack is
allowed. Any other access shall cause a trap.

Reservedi -- any access shall cause a trap.

Reserved2 -~ any access shall cause a trap.

1-30 18
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Context stacks can only be allocated in segments with a protection code
of Coritext Only. Context segments cannot be manipulated directly by any
instruction. Proper manipulation of this information is enforced by

only allowing access through the procedure interface,

Input and Output

The primary I/0 interface is through a special processor called an
Input/Output Controller (IOC). The IOC is a 16 bit processor with a
stardard instruction set tailored to the requirements of three communi-
cations irterfaces: the Air Force 1553B I/0 bus standard, Serial Point-
to-Poir.t (3PP), ar.d Parallel Point-to-Point (PPP). Interactiorn with I/0
devices through an IOC is accomplished by accessing control registers as
locations ir. the I/0 portion of physical address space (the first 2%%*20
locations in memory). The IOC's access memory through the virtual
addressing mechanism. Each IOC program (also referred to as a channel
program) has associated with it three virtual segments, one each for
instructions, data, and messages. The memory management system performs
some checking to see that these segments are used as intended, and that
1/0 program specified addresses lie within the specified segmerts. For
a more detailed discussion of the 1/0 architecture in Nebula, refer to

the paper in Part 2 covering that topic.
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RESULTS OF INDEPENDENT REVIEWS OF NEBULA

INTRODUCTION
This section summarizes the conclusions and recommendations of the

reviews presented in Part 2, The comments in the reviews range from:

Strongly suggested changes,

Possible changes depending on the importance that the Air
Force puts on the application area,

* Problems that are raised but for which no solution {s sug-
gested,

Mismatches between the application and Nebula that can

either be programmed around or can result ir modification of

the architecture,

®* Comments on requirements or useful features of the operating
system or other system programs for Nebula to support the
various application areas,

General comments on the architecture.

This section does not present all of the results of the reviews. For
complete lists of results and for the details and rationale of the con-
clusions presented in this section, the reader should read the actual

papers in Part 2 of this report.
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Notatioral conventions used to refer to the papers in Part 2 as shown ;}jj;[J
below. Often a page number 1is included in the notation (e.g. ii;-
[PORTABILITY p. 151). ' T

MR
{ADA] -~ Implementing Ada on the Nebula Architecture: PE
]
Design Issues and Alternatives -
{PORTABILITY] —- Nebula and Portability
[1/0] —-— Analysis of Nebula Architectural Support LT.TT;.
for 1/0 R
[JOVIAL] -— JOVIAL/Nebula Suitability Report
{FAULT-TOLERANCE] -- Building Fault-Tolerant Systems with
Nebula
{MULTIPROCESSING] -~ The Nebula Architecture and Multi-Processor
Systems
[VIRTUALIZABILITY] ~-~ Nebula Architectural Support for Virtual
Machines
[VHLL] -~ Suitability of Nebula for Very High
Level Languages
{DATABASE] ~- Evaluation of the Nebula Processor for

the Implementation of Database Management

Systems RPN
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[MISC] -- General Observations on Nebula

GENERAL COMMENTS

General Architecture Evaluation

The general type of architecture chosen was not addressed by this
review. Research is being done in many directions on architectures:
High Level Language Architectures,25 Intermediate language architec- s

tures, e. 9., the Western Digital Pascal Microengine,26 capabilities ';n_{l-
architectures, e. ¢g., the Intel iAPX 432,27 reduced instruction set .
architectures,28 and distributed architectures. While these approaches tLt}'ﬂn
do not in general meet the Nebula requirements of a low risk design, -',g‘-{f
architectures of these tybes may be in widespread use within the same
time frame that Nebula computers are planned to enter the full-scale
production phase. This should be an incentive to produce as excellent a

design as possible., The Nebula designers chose a much more conventional

25 Dilenno, T., and Chu, Y., Evaluation of Nebula Architecture for
JOVIAL Data Contructs, Dept. of Computer Science, Univ. of Maryland,
Tech. Report TR-1051, USAF grant AFOSR-79-0056.

26 WD/90 Pascal Microengine Reference Manual, Western Digital, Newport
Beach, CA, 1979.

27 Introduction to the iAPX 432 Architecture, Intel Corportaion, Santa
Clara, CA, 1981,

28 Patterson, D. A., Ditzel, D. R., "The Case for the Reduced Instruc- ST
tion Set Computer," ACM SIGARCH Computer Architecture News, Vol, 8, ~‘mfnj.

1

No. 7, 1980, e
.
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architecture; in fact, Nebula is similar in many respects to a VAX.29
The most likely consequences of this choice are irefficient support for
security and, if Ada is successful, weak support for Ada (relative to
architectu;es of the day which can be designed for Ada using experience
gained from Ada usage). In any case, the general type of architecture

chosen was not evaluated.

Other Comments

There were several comments mentioned in the Introduction, to summarize:

1. The design of Nebula was not time-phased very well with
the design and implementation of Ada -- the language that
is expectedlto predominate on Nebula machines. When
Nebula was designed, there was no experience with Ada
programs. Neither an implementation, nor even a lasting
design of Ada existed.

2. To the degree that the low-risk design criteria is met,
the capabilities of Nebula should be considered in light
of expected capabilities of architectures in the 1late
1980s and 19908 rather than to architectures in use
today.

3. The Nebula design had the luxury of not having to exhibit

29 The VAX Architecture Handbook. Digital Equipment Corp., 1981.
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any type of compatibilty with any existing software.

Future modifications of the architecture are likely to be
severly restricted due to software compatibility consid-
erations -— even when modifications are being éttempted
to correct parts of the design shown to be inadequate.
There should be a high degree of confidence with the
architecture before it 1is finalized due to the relative
ease and low cost of changes made now rather than later.
y, With respect to the research in architecture, it should
be kept 1in mind that while advances in implementation
technology can perhaps be inserted into future genera-
tions of Nebula computers, advances in architectural
technology, for the most part, will not be easily
inserted since they are more likely to impact pfogram

portability.

Implementation Problems

This report did not consider implementation in its evaluation. Thus
implementation problems, and more importantly, the effects of possible
implementations on certain features of the architecture were not ana-

lyzed.30

30 Both the memory management system and the treatment of registers
implicitly assume non-standard implementation techniques.
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NEBULA'S STRONG FEATURES

Much of this report deals with criticism of Nebula. Little has been
mentiored about the positive aspects of the ISA. While Nebula has
assets, the problem areas are precisely what'needs to be considered for
impact and possible modification of the ISA. This section presents some
of the more praiseworthy features of Nebula., The praises for these fea-
tures, however, are qualified; the features introduce, directly or irndi-

rectly, many limitations.

Goals of Nebula's Designers

The goals of Nebula and of the designers31 32 are, ir general, laudable.

Some of these goals are discussed in Section 3; others were adherence to

the following principles of architectural design:33

#* Regularity
* Orthogonality
* Composability

#* "One versus all"

31 Szwerenko, et., al., "Nebula: A New Architecture and its Relationship

to Computer Hardware," Computer, Vol 14, No, 2, February, 1981, pp.
35-41,

32 Dietz, W., "Nebula Desigr and Rationale", Carnegie=Mellon University,

a paper from Proceedings of Panel on Effect of Nebula ISA on Ada,
edited by Martin, E.,, Hammond, Major D., 15th Annual EIA G-33 Commit-
tee Computer Resources, Data and Configuration Management Workshop,
September, 1981.

33 For an informal discussion of these, refer to Wulf, W., "Compilers

and Computer Architecture," Computer, Vol. 14, No. 7, July, 1981, pp.
41-47,
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* "Provide primitives, not solutions®

dowever, as discussed in [PORTABILITY] and [MISC], the goals are not

always attained.

Instruction Format

One of the most sound and carefully thought out areas of Nebula is the
instruction format. There are two general features worth mentioning
here: the size of a memory operand is encoded in the operand specifier,
rather than in the opcode; binary operations are usually provided in
both two and three operand formats. Encoding the size in the operand
specifier rather than the opcode, and providing many binary operations
irn the three operand format may result in many benefits. The size
encoding is probably Nebula's most noteworthy feature. It can drasti-
cally reduce the total number of opcodes needed. It also makes the com-
piler writer's task easier by largely eliminating the optimization anal-
ysis which determines what sizes to allocate to variables and when to do
size conversions.

In actual fact, the ISA does not meet the regularity or orthogonality
conditions sometimes claimed [PORTABILITY], [MISC]l. The ISA is not reg-
ular with respect to these features because there are binary arithmetic
operations that exist only in the three operand format and because all
operands are not operand specifiers (this happens in 25% of the instruc-~
tions). The size of an operand specifier is not orthogonal to the

opcodes both because all operands are not determined by operand specifi-

I-u'7




ers, and because the opcode interprets some operand specifiers as

address operands.

Nebula's Support for HOL Procedure Interfaces

Nebula's procedure interface provides support for HOL procedures and
provides a mechanism which many different parts of Nebula (task initia-
tion, interrupts, vectored operating system calls, exceptions, traps and
OPEXs) carn use. Many of the reports discuss problems with this inter-
face. Because of the commitment to using exactly the same interface for
many different functiorns, the designers were faced with making tradeoffs
between the contradictory demands for quick interrupt response and for

providing as much help as possible for HOL procedures calls.

Enhanced 1/0 Security

Another feature of Nebula is the use of virtual addresses in the I/9
controllers to enhance security. It may be the most helpful, and the
only really innovative, feature of Nebula for supporting security.
Because the data buffer, message pointer and channel program must each
lie within a segment, there are two unfortunate consequences, First, as
explained in the report on multiprocessing, this doesn't allow the chan-
nel to do scatter/gather 1/0 message processsing into different users'
processes without the intervention of the CPU, Second, as mentioned in
the virtualizability report, it restricts the flexibility of the CPU ir

mapping segments when setting up segments for a virtual machine.

I-4.8
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NEBULA'S SUPPORT FOR ADA

ADA SUPPORT
Efficient‘support for Ada should be one aof the two most important con-
cerrs irn evaluating the Nebula architecture. The paper in Part 2 is not
a gernieral analysis of Nebula's support for Ada, but is actually the
third in a series of reviews. It takes up where the earlier reviews
left off. Further evaluation of Nebula and Ada was also dore and is
discussed here and in [MISC]. The first review3d 35 was written by Mark
Davis of Irtermetrics under contract to CECOM in February of 1981, This
report pointed out areas where there were no problems (e.g. support for
Ada's data types) and discussed several problem areas (e.g. uplevel ref-
erences of parameters, copy versus reference parameter passing, Ada
tasking). 3ome minor changes to the architecture were subsequently made
by the Nebula Control Board,36 but most of the problems raised were not
resolved. The second review was part of the general review of Nebula
conducted by the EIA from January to April of 1981, The Ada portion of

this review was written by Roger Arnold of Boeing Aerospace Corpora-

34 Davis, M., Nebula as a Target for Ada, IR #655 Intermetrics, Febru-
ary, 1981.

35 Mark Davis wrote an update to this report in June ("Nebula as a Tar-
get for Ada: Summary and Update", June, 1981). This summarized the
changes to Nebula concerning Ada, reviewed the findings of the origi-
nal report, and discussed the author's changes in viewpoint on some
of the problems.

36 These changes involved treating parameters more uniformly (previously
there were restrictions on accessing parameters after number 7) and e
several changes to the exception handling mechanisms. s
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tion.37

review:

4,

5.

38 A consensus was reached on the following points in the

The context frame/call mechanism must support "cactus
stack".

Display based addressing is "highly desirable".

The uniform treatment of parameters and local data is
"highly desirable", both with respect to modes of access
and uplevel referencing.

Better range checking is needed.

Task management and intertask communication needs study.

The following list is the prioritized list of issues for further consid-

eration that came from this EIA review:

Multitasking within a common memory space
Uplevel referencing of parameters

Uplevel referencing of variables

Range checking

Inter-task communication

Copy versus reference parameter passing

: .-. q-' ‘. i -—-‘ ‘-
{JL"L:."III ‘ <,

37 Martin, E. W., Fischer, H., Fagg, A., Arnold, R. D., James, J.,
"Report of MIL-STD-1862 REVIEW COMMITTEE d.b.a. NEBULA REVIEW
COMMITTEE", Electronic Industries Association G-33 Data and Configua-
tion Management Committee Computer Resources Task Group, June 1981.

38 The following paper was also written as part of this review: Arnold,

"Ada and the Nebula Architecture", Boeing Aerospace Corp.,

February, 1981.
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Joint context and data frames
8. emory protection
9. Referencing parameters greater than 7

10, Necessity of the compound parameter mode

Of these two lists, only the issue on referencing parameters greater
than T resulted in a change to Nebula.

One of the areas that received little attention in the two earlier
reviews was the implementation of Ada tasks on Nebula. The paper in
Part 2 of this report primarily investigates this area. Several possi-
ble implementation strategies are discussed; they are shown to be gener-
ally inadequate. Two sets of changes, one upward compatible and one
incompatible with the present version of Nebula, which give Nebula bet-
ter support for Ada tasking are then discussed [ADA p. 13].39 Besides
supporting tasking in Ada the incompatible changes also provide some
support for the data frame.

The following is a prioritized list of the suggestions of this report

concerning Ada:

1. Modify CALL and RET instructions, and add LIMITED CONTEXT
SWITCH instruction for Ada tasking.

2. Modify 1integer truncation such that if a truncation

39 Also, see the subsection on Ada tasking later in this section.
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exception is to be raised as a result of an operation,
then the result won't be written to memory. The instrucé-
tion will ﬁe aborted and the exception will be raised.
3. Add an instruction analogous to RANGE with floating point
operands.
4, Consider the addition of more support for range checking.
5. Add hardﬁare support for the data stack. This may include
several of the following:
a. Hardware allocation of the data frame
b. Hardware supported display and display based
addressing modes
c, Remove parameters from context stack and incorporate
them on data stack. The parameters may still be
passed by the call instruction, but the parameter
addressing modes would be deleted. Parameters would
be accessed in the same manner as local data.
d. Include support for uplevel referencing of data and
parameters.
6. Provide more access to information in suspended procedure
contexts. If changes from the previous point don't allow
uplevel parameter references, then changes made under

this point should.

Points 1 and 2 are discussed in (ADA] and [MISC] respectively. Points 3

and 4 concern hardware support for run-time checking. This is an area
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where languages need hardware support and aids for compiler optimiza-
tion. Because of inefficient support for run-time checking in implemen-
tations, there is a tendency to turn the feature off, thus negating a
very useful feature in Ada. One problem with hroviding support for this
with Ada, is that there is a large measure of uncertainty: in how much
optimization the software can do, to what extent programmers will remain
within corstraints,40 and as to how efficient will the hardware solution
be. In any case, Nebula should consider providing more support, but not
in a way which interferes with the ability of the compiler to optimize :‘«':'f"
away a particular run time check. Changes along the line suggested by ijtw;f_
Dwight Hill of Bell Labs should be considered.41 42

Concerning point 5, in both the EIA review and this one, it was felt
to be an area where Ada as well as any other Algol-like HOL (e.g. b T
JOVIAL) could use support. Further, given the complexity of the present 5;_:}T{§
support for HOLs, it was worth serious consideration. Although useful »
support for Ada, some of the changes mentioned in point 5 are inappro-

priate at this stage of the design.

40 There are several optimization techniques that can help with run~time
checks. The success of the various techniques depends, in part, on
programming style. R

41 Hi1l1, D., "A Hardware Mechanism for Supporting Range Checks," ACM
SIGARCH Computer Architecture News, Vol. 9, No. 4, June, 1981,

42 Hill's suggestion might be modified by additional instructions which Ll
check only one bound., If software optimization showed that one bound SRR
could not be violated, the hardware would not need to check it. Lol
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. Support for uplevel references should be provided. There are many
reasons why access to suspended contexts in the context stack is needed.
Also, the concept of requiring recompilation of enclosing units when a

= subunit is recompiled is not realiy in keeping with the spirit of Ada.

«
12w
[

Even allowing that it was, cases would arise where recompilation is

Pl
Y

either impractical or impossible. The compiler would have to have the

ability to create a copy of all potentially uplevel addressable parame-

iy -~ i3

ters on the data stack. The likely result of this requirement is that

compilers will not use the Nebula parameter passing mechanism.

WRITING PORTABLE PROGRAMS FOR NEBULA

Portability is the secord of the two primary concerns in evaluating
{f Nebula, ard is the area containing Nebula's most serious problems. In
" addition to [PORTABILITY], in which the concepts and deficiencies are
discussed at great length, these problems also arise in a number of
n: other papers in Part 2, especially [MISC]. In particular, [MISC] con-
tains the fullest description of the portability issues stemming from
the differing Air Force and Army goals, and discusses the overall ques-
tion of how Nebula's portability deficiencies may impact the Air Force,
- "Portability" simply means being able to take a program written and
debugged in one environment and have it function identically in another.
By defirition, portability is at the heart of any standardization
‘¢ effort, It is a major goal of both the DoD and AFSC-HLSS standardiza-

tion programs.




Both IBM and DEC have produced series of computers that support port-

ability, and it {s a significant advantage for each company. As

detailed in [PORTABILITY], however, MIL-STD-1862A is not precise enough

to be the specification for such a series of computers. Neither the

general outline of the machine's operation nor its behavior in an enor-
mous range of special situations is sufficiently well specified for the
construction of "plug-compatible"™ machines by several different vendors,
It is possible, in fact, that a single vendor might produce incompatible
versions of Nebula, all of which fully satisfy MIL-STD-1862A.

In addition to documenting "some of the most important, most obvious,

and most  interesting" portability deficiencies in MIL-STD-1862A,

[{PORTABILITY] also suggests a plan by which a standard architecture may

be desigred and managed for "controlled rnon-portability", This

requires, first, a complete and unambiguous definition of the ISA, ard

then a "consistent set of principles" by which implementation deper.den-

cies may be permitted. Most important of these principles should be a

low cost-benefits ratio, where "cost" relates to the problems caused by

rnon-portability and the difficulty of dealing with them, and "benefits"

measures the expected improvement in machine price or performanrce

resulting from allowing the implementation dependency.
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PROBLEM AREAS AND SUGGESTED CHANGES

The reports in Part 2 raise many concerns with Nebula, and suggest sev-
eral changes to the architecture to alleviate these problems. The sug-
gested changes are either in the form of a specific change or of an
approach to resolving the particular problem. This section summarizes
several of those concerns and suggested changes. It is organized by
subsection of MIL-STD-1862A rather than by area of the individual
reports. See the appropiate reports in Part 2 for a full explanation of

ard rationale for the changes.

Procedure Interface

The procedure interface (the procedure call mechanism, the context
stack, and the parameter addressing modes) is a central feature of
Nebula. However, a majority of the reports discuss problems with and
suggest changes to the procedure interface [ADA]l, {JOVIAL],
{PORTABILITY], {VHLL], [VIRTUALIZABILITY], [MISCI.

A central feature of the procedure interface is the context stack. A
context stack is a stack of procedure contexts that are pushed and pop-
ped by the procedure call and return instructions. Each procedure cor-
text corsists of: the registers used by the procedure, the parameters of
the procedure, the PSW of the procedure, and the state of the proce-
dure's exception handler.

The procedure interface provides HOL support by saving and restoring
registers and by establishing and accessing parameters. It provides

additional support for Ada by maintaining the state of the exception

I-4,16
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handler and propagating exceptions. Context switches caused by inter-
rupts, supervisor handled exceptions, debugging breakpoints, traps, and
task initiations wuse the procedure interface. Nebula's support for
security is also related to the procedure interface. A context stack
can simultaneously contain procedure contexts of procedures executing in

privileged mode, in supervisor mode, in both, or in neither.

Allowed access to the context stack: Access to the context stack in

Nebula is restricted -- partly to give freedom to implementors. In the
current procedure context, the parameters, registers, and exception han-
dler may be accessed via either the addressing modes or the exception
handling instructions. Except for the condition code bits and the
Enable Arithmetic Error (EAE) bit, there is no way to access the PSW of
the current procedure, Access to suspended procedure contexts is very
restricted. The privileged instructions, LPSW and SPSW, provide access
to the PSW of the caller's context, The only other method for obtaining
access to information in suspended context stacks is using the parame-
ters of the current procedure context. These parameters can reference
anything that was accessible to the caller which includes the registers

of the caller and the objects referenced by the caller's parameters.

Design Principle Violations: Nebula's problems with the procedure
gn

interface primarily arise from failing to heed three of its design prin-
ciples: low risk design; orthogonality; primitives rather than solu-

tions. The procedure interface is actually one of the highest risk fea-

I-4.17




tures of the Nebula design, but there simply wasn't enough time in the
design schedule to do the necessary software and hardware evaluation to
get the details of the procedure interface correct. A violation of the
second principle is the entanlgement of security features with the fea-~
tures supporting HOLs. This entanglement {s partly responsible for the
difficulty in finding changes to alleviate the problems with the proce-
dure interface.

It is the violation of the third principle that is most obvious; sim-
ply being problematic solution, inadequacies with the solution arise --
precisely the reason to avoid solutions and provide primitives. This
can be illustrated with two examples of problems associated with provid-
ing solutions rather than primitives.u3

First, Nebula doesn't provide primitives for helping the compiler
writer gererate an efficient procedure interface but attempts to provide
a solution., The procedure interface provides HOL support by maintaining
some of the information traditionally kept on the software-maintained
data stack (i.e. the parameters, saved registers, exception handler
state) on a hardware-maintained stack (the context stack). The informa-
tion is used 1in a particular way: parameters are passed by reference,
registers are not inherited (except R1), all registers are always saved
and restored across procedure calls. Nebula doesn't help the compiler
writer with the data stack maintenance, but rather appropriates part of

the data stack, isolates this part from the compiler writer, keeps it on

43 Wulf, Willian A., "Compilers and Computer Architecture”, Computer,
Vol. 14, No. 7, July, 1981, p. 43,
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a separate stack (complicating stack space management), and tries to
provide the support needed for this stack.

Second, in restricting themselves to a solution, the designers had to
trade-off the needs of context switches for interrupts (fast, but with
complete state saved) with the needs of HOL procedure calls {(putting
some operations of the prolog software into the hardware for faster pro-
cedure calls, incorporating a flexible approach to amount of state
saved, and performing these operations in a manner compatible with vari-
ous HOLs). It may e that mueh of the mechanism provided makes more
sense as a context switch mechanism and that instead of associating the
interrupt and trap invocation mechanism with the procedure interface, it

should be associated with task switching.

Procedure Interface problems raised by Reviewers:

References to data in stacked procedure contexts: Since the regis-

ters and parameters are objects under the compiler's control, the compi-
ler may need access to them. Not allowing this access restricts what
can be stored on the context stack, Earlier reports on Nebula and
Ada,44 45 46 have pointed out that this means parameters which are

potentially up-level referenced can't exist only on the context stack.

U4 Davis, M., Nebula as a Target for Ada, IR #655 Intermetrics, Febru-
ary, 1981,

45 Martin, E. W., Fischer, H., Fagg, A., Arnold, R. D., James, J.,
"Report of MIL-STD-1862 REVIEW COMMITTEE d.b.a. NEBULA REVIEW
COMMITTEE", Electronic Industries Association G-33 Data and Configua-
tion Management Committee Computer Resources Task Group, June 1981,

46 Arnold, R. D., Ada and the Nebula Architecture, Boeing Aerospace
Corp., February, 1387.
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This is also a problem for LISP and JOVIAL [VHLL], (JOVIALI. It is a
problem for LISP not only because of up-level parameter references, but
also because of the demands of garbage collection and interactive debug-
ging. Further, though possible in Ada and JOVIAL, in LISP it is impos-
sible for the compiler to determine which parameters are actually up-
level referenced.id7 Partly because of this, it 1is felt that
implementations of LISP would not use the CALL instruction.

In running virtual machines, privileged instructions must be simu-
lated by the real supervisor [VIRTUALIZABILITY]. To simulate these
instructions, the privileged instruction trap handler will need access
to the parameters and registers of the procedure context which caused
the trap. However, they are inaccessible in Nebula.

Two proposals are presented which give the programmer more access to
information in suspended procedure contexts (JOVIALI, (VHLL].

Parameter passing methods: [JOVIAL] and [ADA] also discuss problems

with passing parameters. In Nebula parameters are passed by reference;
in both JOVIAL and Ada other methods are also required, e.g. call by
value, Given this mismatch, parameters which are not passed by refer-
ence must be handled separately; they must be explicitly copied by soft-

ware in some manner [ADA p. 61.48

47 To do this analysis in Ada requires recompilation of enclosing units
when a subunit is changed.

48 Davis, M., Nebula as a Target for Ada, IR #655 Intermetrics, Febru-
ary, 1981, p. 8.

I-4,20




[al R i sal vl A b il ot Al g sl i A S A A A i

Hardware solutions to this problem, involving a bit vector in the
procedure descriptor to indicate the passing method, are discussed in
(JOVIALJ.49 Urfortunately, these solutions are not conceptually clean;
they add complexity to the procedure interface. Also, rather than
resolving the general problem, they only solve it for Ada and JOVIAL
(and other languages that use a 3subset of the parameter passing methods
of Ada and JOVIAL).

Procedure Interface and Ada Tasking: Nebula provides no support for

the type of tasking provided in Ada.50 Further, by enforcing use of a
true stack for the context stack in an Ada program, Nebula's procedure
interface provides an obstacle to implementing Ada tasks. To meet the
requirements of managing the activation records for a large number of
tasks, a more complex data structure, typically a "cactus stack", is
required [ADA p. 2], While a cactus stack can be used for the data
stack, the corntext stack which contains some of the information mairn-
tained in the activation records is maintained by the hardware as a sim-
ple stack.

To resolve the problems of the context stack supporting Ada tasking,
three instructions are proposed: a new internal context switeh instruc-
tion, a modified CALL instruction, and a modified RET instruction {ADA

p.14], The old CALL and RET instructions would be upward compatible to

49 Arnold, R. D., Ada and the Nebula Architecture, Boeing Aerospace
Corp., February, 1987, p. 8.

50 Nebula's tasking instructions switch virtual memory spaces and, while
useful for scheduling users, are not appropriate for supporting task-
ing within an Ada program.
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the new CALL and RET instructions. The internal context switch
instruction would be used for switching Ada tasks; it would change the
value of the context stack pointer, but would leave the address space
unchanged. These instructions would allow the hardware supported con-
text stack to be a "cactus stack."

Support for the Data Stack: An additional change suggested for Ada
suppory is the extension of the procedure interface to include support
for the data stack [ADA p. 17). This change would not be upward compat-
ible. Other suggestions for this type of support were also made in
reviews of Nebula [JOVIAL].51 52 If hardware support for high order
Algol-like languages is a goal of the architecture, then rather than
implementing a portion of the data stack in the hardware, a more appro-
priate solution is to provide a general support mechanism for the data
stack which includes addressing modes for both local and global data and

activation frame space allocation.

Effects of Procedure Interface Problems: Without changes to the archi-

tecture, the 1likely result of the mismatches is that compilers will
avoid the hardware features in Nebula for HOL support. The above mer.-
tioned problems with the parameters may cause compiler writers to avoid

the hardware parameter passing mechanism in favor of using the usual

51 Martin, E. W,, Fischer, H., Fagg, A., Arnold, R. D., James, J.,
"Report of MIL-STD-1862 REVIEW COMMITTEE d.b.a. NEBULA REVIEW
COMMITTEE", Electronic Industries Association G-33 Data and Configua-
tion Management Committee Computer Resources Task Group, June 1981,

52 Arnold, R. D., Ada and the Nebula Architecture, Boeing Aerospace
Corp., February, 1987,
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software methods. The problems with supporting tasking might cause them
to abandon altogether the procedure call and return instructions (CALL,
RET) 1irn favor of the "jump to subroutine" and "return from subroutine"
instructions (JSR, RSR) [ADA p. 11]. It might be noted that even trying
to avoid using the procedure interface can 1lead to problems as the rest

of the architecture (SVCs, OPEXs, etc.) will continue to use it [ADA p.

1117,

Traps, Exceptions, and Interrupts

Host of the problems with these parts of Nebula were: associated with
the procedure interface (traps, exceptions, and interrupts are invoked
through the procedure interface), a result of underspecification, or
involved portability issues. The problems related to the procedure
interface generally involved lack of access to needed information on the
context stack. For discussion of issues affecting portability or
resulting from underspecification see [PORTABILITY] and [MISC]. Other

issues are discussed below.

Privileged instruction trap: [VIRTUALIZABILITY, ©p. 5] discusses the

problems whern a virtual machine, rurning in virtual privileged mode,

tries to execute a privileged instruction. As virtual machines always
run in unprivileged mode on the real machine, when the virtual machine
"executes" a privileged instruction a privileged instruction trap will
oceur, The real machine will simulate the instruction for the virtual

machine. This presents several problems.
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1. Any registers or parameters accessed by the instruction
being simulated are in the context stack of the virtual
machine and inaccessible to the privileged instruction
trap handler,

2. Since aliasing of segments isn't allowed, if the privi-
leged instruction is in an "Instruction Access Only" seg-
ment, the segment will have to be remapped with the
REPENT instruction before the trap handler may access the
instruction.

3. After simulation, the virtual machine must be resumed at
the instruction following the privileged instruction
which was just simulated. WNebula provides no way for the
trap handler to change the program counter of the virtual
machine or resume the suspended task at a point other
than the point of interruption.

4, Certain instructions, for example PTASK, PRAISE, PINIT,
and SETSEG, manipulate or create implementation dependent
data and are impoésible to simulate without more informa-

tion than is provided in MIL-STD-1862A.

These points are not only problems for virtual machines. Even when not
running virtual machines, the privileged instruction trap handler, the
memory management trap handler, the scheduler, and the supervisor excep-
tion handler may face some of these problems in trying to perform their

functions.
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There is also a problem when a virtual machine running in virtual
non=-privileged mode encounters a privileged instruction

[VIRTUALIZABILITY p. 6]. Nebula will trap to the real machire's privi-

leged instruction trap handler. The real machine should then simulate a ' ﬂ{,ﬁ
trap to the virtual machine's privileged instruction ¢trap handler. A i:j:}‘
e ‘{
S
task can be initiated on the virtual machine's virtual Kkernel context SO

stack at.the address specified in 1its trap vector using the tasking f{‘if'
instructions, but Nebula doesn't provide a mechanism for the required -
parameter to be passed.

One of the changes suggested to help make the ISA virtualizable is ..
the addition of a PRIVEX vector that would function analogously to the Q:E'i

OPEX vector. [VIRTUALIZABILITY p. 12] = 1;-'?}

Exceptions: ({JOVIAL p. 46] recommends reserving an exception code which o
SN

the JOVIAL compiler would use for ABORT statements. This would enhance :jf{w'
A

portability of JOVIAL programs. It 1is further suggested that some ’?1:’{

exception codes be reserved for hardware exceptions that may be added in
future revisions of Nebula [MISC]. These points suggest that to enhance
portability, exception codes should be treated like unused opcodes and
be either reserved or allocated to particular groups.

In Nebula, propagation of an exception isn't required to be interrup-
tible. Thus a long call chain could lock out interrupts for significant
periods of time -- potentially causing problems for both security and

system responsiveness.
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Interrupts: [FAULT-TOLERANCE] and [I/0] commented on interrupts in
Nebula. The only problem raised by [FAULT-TOLERANCE] was the absence of
a concept of processor failure. ([FAULT-TOLERANCE] suggested the ability
to have an "I am dead" signal so the hardware could signal the software
and/or the outside world of a processor failure, and a "you are dead"
line so a processor, upon detecting failure of another processor, could
signal it to shut down. To effect this, a processor failure interrupt
should be added which would have as a parameter an implementation depen-
dent fault code indicating the type of failure, The interrupt handler
could be part of the non-portable kernel software associated with a par-
ticular Nebula implementation.

Because of the specification of the 1location of the interrupt vec-
tors, a maximum of ten I/0 controllers may be attached to a Nebula
implementation. If directly connected devices which can interrupt
Nebula are also attached, this number is even smaller [I/0 pp. 15, 191.
Another problem is that the association of physical vector addresses for
the interrupt and the address of the IOC register block causing the
interrupt is not programmer visible. [I/0 p. 19] suggests changes to

the architecture to solve these two problems.

Memory management

The memory management system wasn't directly studied as part of this
evaluation (see comments under "Areas Needing Further Study" below),
However, (VHLL], [VIRTUALIZABILITY], ([PORTABILITY], {M1sC], and

[{DATABASE] did comment on the memory management system.
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The memory management sSystem was felt to be inadequate for large LISP

programs [VHLL p. 6]. A scheme to use the memory map to implement a
demand paging system was discussed. However, subsequent changes to the
staﬁdard have made any such schemes impossible.

{VIRTUALIZABILITY] suggests that the restrictions on the number of
segments provided be removed, It suggests that there should be no
restriction, but rather a performance penalty if the number of segments
in a map exceeds the number of cached entries provided by the hardware.

There is also a problem with supporting the number of segments that
exist in the real machine on the virtual machine [VIRTUALIZABILITY p.
3]. When executing in the virtual machine, one of the segments in the
supervisor map will have to be reserved for the trap and interrupt harn-
dlers of the real machine. This will deny the virtual machine of at

least one segment in its supervisor map.

I1/0
Several papers commented on I/0 in Nebula [MULTIPROCESSING], {1/,0],
[VIRTUALIZABILITY], [DATABASE]. For both multiprocessing and database
application, it was important to be able to offload communications pro-
cessing to the IOCs. [MULTIPROCESSING] found the IOC inadequte for this
task. Timer support was required in the IOCs. More instructions were
desired to perform checksum calculations and bit stuffing operations.
{I/0] commented on several problems in the area of the IOC to CPU

interface.

1. The SETSEG description contains no restriction on issuing
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the instruction while the IOC is active.

2. The maximum IOC interrupt priority is not normally pro-
gram visible; the priority of an interrupt 1is coded in A

the INT instruction which resides in a instruction-access

segment. Therefore, a program cannot find out the maxi- Q?:f::
YL
Wt
P

mum priority allowed by an IOC, and would have trouble

changing the priority in the INT instruction even if

access were allowed. [I/0] suggests that requests for
greater than the maximum IOC priority be treated as if :Eﬁz“
they requested the maximum and no IOC error be reported., ;4i

3. The state of a Nebula machine following a RESET or IPL ;;;{::
sequence is inadequately specified. Also, the format of s
the IPL data should appear in the standard.

4y, The limitations on the number of IOC's (10) may be sev-
erelylimiting in larger configurations. [I/0]) suggests
solving that problem along with problems caused by lack
of program visibility to the interrupt vector by treating
I0C interrupts in a fashion that is consistent with SVC

and OPEX interrupt handling.

Instructions

String Instructions: (DATABASE p. 6] proposed modifying the CMPBK (Com-

pare Block) instruction to test for all six relational operators (=, <=,
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>z, <, >, <), rather than only equality:; this report also proposed mod-

ifying CMPBK to work with strings of different lengths, [PORTABILITY]

raises several issues concerning interruptible instructions.

Procedure call and task switching instructions: As discussed above,

[ADA p. 14] proposes modifying the context stack to support tasking in
Ada. This irvolves upward compatible changes to the CALL and RET
instructions and the introduction of a new internal context switch
irnstruction. This instruction would change the task context stack
pointer but would not change the user map pointer, Thus a task switch
would occur but the same address space would be wused. An additional,
but incompatible change 1is also suggested to the CALL and RET instruc-
tions -- support for allocation of the data frame, The above mentioned
support for the allocation of context frames would be extended to sup-
port data frames.

[VIRTUALIZABILITY pp. 7, 11] discusses the need for the real machine
to be notified whenever the virtual machine changes privilege or super-
visor/task status. That is, the real machine must know in what mode,
privileged or non-privileged, the virtual machine thinks it is operat~
ing. Nebula doesn't allow for this. In particular, ERET, ERP, CALLU,
and RET can change this status and the real machine has no way of know-
ing. Two possible methods of resolving this problem are discussed:
addition of microcode to keep track of which mode a virtual machine was
operating in, or the addition of a PRIVEX vector (see above, "Privileged

Instruction Trap)." An alternative solution which requires more exten-
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sive microcode changes is to add an instruction which operates 1like
LTASK but additionally maintains several flags indicating virtual
machine privilege status which can then be maintained by the microcode
implementing sensitive instructions. This additional microcode for
these instructions would not be executed unless a flag was set indicat-

ing that a virtual machine was executing.

AREAS REQUIRING FURTHER STUDY

There are several areas of Nebula which were not studied and which need

to be investigated, namely:

1. The memory management system has been one of the most
controversial parts of Nebula because of: its segmenta-
tion approach, its failure to guarantee to the programmer
more than 16 segments in a map, and the absence of sup-
port for demand paging. It has been accused of biasing
the design to constraints of the microcomputer implemen-
tations and providing too 1little support for minicomput-
ers. At the same time, the microcomputer implementations
may not require the costly segmentation and relocation
hardware. Several of the reports comment on the memory
management system, namely: virtualizability, multipro-
cessing, database management systems and miscellaneous.
However, it has not been directly investigated.

2. Both the database management system and multiprocessing
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reports stressed the need for the IOC to do some of the
communications processing. Since those papers did point
out some weaknesses, the ability of the IOC to do this
work needs to be further investigated.

One of the costliest features in executing Ada programs
may be run-time checking for constraint errors, Ineffi-
ciencies in program execution speeds resulting from thi$
leads to suppression of the checks. Nebula would serve
Ada well by providing as much support as possible for
range checking. Presently this is supported only by the
RANGE instruction.

Several features of Nebula, for example the memory man-
agement system and the context stack, require special
implementation techniques to be efficient. Investigation
of implementation techniques available across the desired
performance range, and the effect that possible implemen-
tation techniques may have on the reviews of that feature

of Nebula needs to be performed.
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Section 1
INTRODUCTION

The major effort involved in this review of the Nebula ISA was perform- - -
ing studies in several areas. This section contains the reports result-
ing from those studies. The areas investigated were: ST

* support for Ada

* portability

* 1/0

* support for JOVIAL

* Fault-tolerance A ';,}TJ

* virtualizability et

* support for Very High Level Languages, e. g. LISP and SAIL e

* Data-base system support

* Multiprocessing

* Miscellaneous
These are listed in order of priority. The priority of the report
affects the findings since a higher priority area will be more justified
in suggesting changes to improve support for that area than a lower pri-
ority area. Thus, for example, given a construct that hinders both aAda
and JOVIAL implementations, the Ada paper is more likely to suggest that

a change be made.
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1.0 Introduction

In the industry review of the proposed MIL-STD 1862 computer ar-
chitecture conducted by the Electronics Industries Association
(ETIA), a number of potential issues were raised. These 1issues "\
were classified as management issues, Ada issues, and detailed
instruction set architecture (ISA) issues.

During the review process and in a one week intensive meeting of :
the Nebula Technical Advisory Board in May, most of the issues IR
raised by the EIA®“s review committee were satisfactorily resolved r :

in one manner or other. An exception, however, was virtually the
entire set of issues related to the implementation of Ada on the ST
Nebula architecture. The board reportedly discussed the issues T
at some length, but could reach no consensus as to a desirable S
set of changes that would resolve the issues, As a result, it
recommended no change to the architecture in the areas in ques-
tion.

L. -

L T

The decision to recommend no changes relating to Ada issues is
disappointing, but understandable. The development schedule for
the Army“s Military Computer Family program (MCF), which depends
on the Nebula architecture, created a good deal of pressure to
freeze the definition of the architecture early, and to
discourage major changes. Resolution of the most serious Ada is-
sues would have required relatively far reaching changes in the
architecture. There simply was not sufficient time to develop
agreement on such a set of changes. However, the unresolved is-
sues leave DOD procurement officials and prospective implementors
of Ada with some difficult questions to resolve.

R S A )

The most basic question that must be decided is whether to try to
live with the standard as it now exists, or to press for at least
some additional changes that would facilitate Ada implementa- ST
tions., The sections that follow discuss some of the options that S )
are available, and some of the pros and cons of the various CTe
choices, Section 2 briefly reviews the issue of memory manage- C

ment in an Ada multitasking environment, which was identified o

during the industry review as the single most critical Ada issue, -
Section 3 reviews other significant Ada issues. Section 4 consi- RS
ders options available if no changes in the standard are sought, S
while section 5 considers options available when varying degrees e
of change to the standard are allowed.
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2.0 The Memory Management Issue

Ada“’s concept of tasking is based on the notion that programs can
be and often are most naturally organized as collections of
parallel, communicating processes. This approach is not new. It .
has been around for many - years in such languages as Simula, ). .
Algol-68, Modula, Small Talk, and Concurrent Pascal [5, 14]. It

is closely akin to the concept of co-routines, which have been PRI
implemented in a wide variety of general and special purpose AN
languages {9, 13]. However, it has not previously been a central AN
feature of a "mainstream"” programming language. et

A common characteristic of languages employing multiple parallel )
processes is that individual procedures do not execute in a

strictly "last in, first out" manner. This means that a simple

stack 1is no longer a suitable mechanism for managing their ac-

tivation records. For example, one task, task "A", may execute

for a period of time and then be suspended. Another task, task -
"B", may then execute for a time before it, too, 1is suspended. -
If task "A" is resumed at that point and attempts to make a call, L~f—.
it will find that the stack is blocked by activation records for S
the suspended task "B" which must not be overstored. o

2.1 General Approaches

There are basically two solutions to the problem described above.
One 1is to use multiple stacks, reserving blocks of memory suffi-
cient to give each task its own stack. This is an efficient
solution when the number of tasks is small and there is limited
communication among them. It breaks down, however, when the
number of tasks is large. This will be discussed in more detail
shortly.

The other solution, and the one which is normally preferred for
the implementation of multitasking languages, is to use a more
complex data structure than a stack for the management of activa-
tion records. One alternative 1is a fully general data heap.
This is expensive, however, unless dynamic memory management is
directly supported in the processor architecture. It is also
more general than really needed, since procedure activations
remain "last in, first out”™ within individual tasks. A better
alternative is therefore a modified type of stack capable of
spawning "side stacks" at arbitrary points, Linear storage is
used for both the original stack and its offshoots, making the .
physical structure in memory a sequence of discrete stack seg- )
ments connected by links. The 1logical structure, however, is T
suggestive of a saguaro cactus, so the structure is usually re- I
ferred to as a "cactus stack". A set of algorithms for the . )
management of a cactus stack is described in appendix A.
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2.2 The Nebula Model

For the Nebula model of tasking, the memory management solution
of separate stacks is strongly assumed. The Nebula call mechan-
ism divides the general concept of "activation record" into two
parts-- a "context frame", managed by hardware, and a "data
frame", managed by software. For the allocation of context
records, at least, the assumption of separate stacks is firmly
"wired in" to the call mechanism. A task must have an open con-
text stack for the call mechanism to function properly, since a
new context frame is created simply by decrementing the current
context frame pointer by an appropriate amount. On a return, the
caller’s context frame is reestablished by incrementing the
pointer by the size of the current frame. There is no provision
for a dynamic link within the context frame, so frames must be
contiguous. This minimizes procedure call overhead and optimizes
the design for an expected style of programmihg in which tasks
are relatively isolated, and task calls are greatly outnumbered
by procedure calls.

Minimizing procedure call overhead 1is certainly a reasonable
goal, but the assumptions behind the Nebula model for tasking are
questionable. 1In particular, the assumption that each task can
be allocated a sufficiently large block of memory to run with its
own separate stack is out of line with the number of simultane-
ously active tasks that can be reasonably anticipated for at
least some Ada programs. Part of the problem is that the com-
piler cannot know, in general, how much stack space a particular
task will require; depth of recursion is often data dependent,
and separate compilations make it difficult even to determine if
a task will use recussion. But even if a perfect projection of
stack space requirements could be made for each task, memory
utilization would still be unacceptably poor in many cases. To
avoid memory faults, the compiler would have to allocate to each
task the maximum amount of space it would ever need; yet in ap-
plications where tasking 1is heavily utilized, most tasks spend
most of their time in a "dormant" state with minimal space re-
quirements.

As an example of how tasking might be used in real time applica-
tions, the ACM SIGPLAN Rationale for the Design of the Ada Pro-
gramming Language contains a sample Ada package for supporting
radar track management [1ll]. The package declares a family of
tasks 512 elements deep; each member of this family includes
storage for one track, and entry points to initialize, read, or
change the track information. The structure of the task insures
that a track can be initialized only once, and that it cannot be
changed while being read. Within a 1larger radar surveillance
program, the entries of these tasks would be called very fre-
quently. Such calls might, in fact, outnumber ordinary procedure
calls, It is difficult to imagine how the Nebula model of task-
ing could work for a program with so many tasks and such frequent
task calls.
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The radar track management package described in ([1ll} is simpli-
fied for purposes of illustration. However, it is not a "con-
trived" example, unlikely to arise in "real world"” applications.
It would admittedly be possible to write a track management pack-
age which did not employ such extensive use of tasking, and which
would be more suitable for implementation on Nebula under its
current tasking model. However, the package as described makes
an entirely reasonable use of tasking. It was included in the
SIGPLAN document specifically to illustrate the software en-
gineering advantages of this feature of Ada. It typifies an ap-
proach to programming which has been used successfully and to
considerable advantage in languages like Simula. It is unreason-
able to argue, then, that Nebula shnuld not be required to sup-
port this type of usage.
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3.0 Other Issues
3.1 Call Mechanism Performance

During an industry review of tae Nebula architecture conducted
under the auspices of the Electronics Industries Association, the
procedure call mechanism was the focus of much criticism and com-
ment. The bulk of reviewers” responses could be divided more or
less equally into two categories. Some reviewers felt that the
mechanism did too much in hardware, precluding software optimiza-
tion of register usage and calling sequences. Others felt that
it did too 1little by failing to allocate a data frame for the
called procedure.

Regarding the first point, there certainly are implementation ap-
proaches which might give poorer performance for the hardware
based call mechanism of the standard than for an optimized
software mechanism. An example would be one which simply main-
tained users” registers and other context information internally
during procedure execution, waiting until the next procedure call
to store it in the context region of memory. This approach would
generate essentially the same memory references as a simple-
minded software mechanism; conceivably, a smarter software
mechanism which allowed less than the full set of registers used
by a procedure to be saved would give better performance. Howev-
er, there are other implementation approaches which would give
much better performance than any software based mechanism.

An example of an implementation giving good performance in the
call mechanism is one using parallel write-through from the con-
text cache to the context area of memory. In that case, no time
is required to save the caller”s context when making a procedure
call. Alternatively, a mechanism able to maintain multiple pro-
cedure contexts within its cache would also perform well. The
point is that the architecture does not prescribe the implementa-
tion and is not intended to. Criticism based on performance con-
siderations for one particular type of implementation 1is there-
fore 1largely irrelevant. The definition of the call mechanism
allows designers to select implementations which do give good
performance, and in that respect, at least, it makes good archi-
tectural sense.

The last statement above is not meant to imply that there are no
problems with the Nebula call mechanism. They relate to its usa-
bility for the implementation of the Ada language, however, rath-
er than to the performance of the basic mechanism itself. The
issue of memory management and the call mechanism”s dependence on
an open stack was discussed in section 2 above. An additional
issue concerns the method in which parameters are passed and
referenced.
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3.2 Parameter Passing and Referencing

Problems with the parameter passing and referencing provisions of
Nebula®s call mechanism exist, but appear less serious than those
associated with memory management for tasking. As discussed in
[7], the software workarounds required to match the Ada semantics
are not unreasonably expensive.

The specific issue is that Ada requires scaler parameters to be-
passed by value, so that programs will be more likely to behave
consistently under different multitasking implementations. Ex-
cept for 1literals, however, Nebula passes parameters by refer-
ence. Ada also requires that parameters of an outer procedure be
visible to procedures nested within it. Nebula provides no
method to reference parameters outside of the procedure to which
they belong.

To achleve parameter passage by value with WNebula, either the
calling procedure must copy scaler parameters to local tem-
poraries, passing descriptors of the temporaries as the actual
call parameters, or the called procedure must copy parameters to
local temporaries on entry, referencing the temporaries within
its body rather than the parameters themselves. The former ap-
proach will often involve no added overhead to the call, since it
is the necessary method to handle output parameters when the
value of the parameter within the calling program is constrained.
However, it does not solve the problem of uplevel referencing of
parameters, for which the latter approach is required.

3.3 Tasking Operations

An item that was identified as a significant unknown during the
EIA review of the Nebula architecture was its suitability for the
implementation of various Ada task management operations. For
instance, would adeguate performance of Ada programs require spe-
cial architectural features to support parameter passing on task
calls, selective wait statements, or task exit monitors?

A significant conclusion of the present study is that, with one
major Qqualification, such features do not appear to be needed.
It may ultimately prove desirable to extend the Nebula instruc-
tion set with operations tailored to the management of tasks, but
the nature of the operations required is compatible with imple-
mentation under the current OPEX facility. WNo underlying changes
to the basic architecture appear “o be required.

The qualification is that, to achieve the type of data sharing
and communication between tasks required by the language, Ada
tasks must use commonly mapped data spaces. It is not feasible
to use separate data spaces for each task and depend on operating
system software to manipulate map entries on a case by case basis
when sharing is required. This, in turn, means that data frames
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cannot be allocated from a simple stack within a task”s own
space. A more complex algorithm, such as that of Appendix A,
must be used to allocate frames from a space that is commonly
mapped for all tasks. If the allocation 1is performed in
software, there will be a significant increase in procedure call
overhead. With careful implementation of the algorithms of Ap-
pendix A, the increase may be considered tolerable; however, it
argues in favor of the changes discussed in section 5.3.1 below.

3.4 Error Detection and Diagnosis

Another issue raised in the EIA review is that the architecture’s
capabilities for trapping software errors, while acceptable by
the standards of most current commercial architectures, are weak
for an architecture of Nebula”s generation and intended lifespan.
The Intel 432, for example, provides run time error detection
capabilities that dramatically eclipse those of the Nebula archi-
tecture,

There is a definite run time penalty associated with the type of
architecture used in the 432, and it may be appropriate for Nebu-
la to avoid such an approach. Nevertheless, there are a number
of features that could enhance Nebula“s capabilities for trapping
software errors without impacting its run time performance. In
some cases, execution performance would probably be enhanced by
eliminating the need for more expensive run time checks imple-
mented in the software. This is a significant issue, since the
definition of Ada requires a high 1level of error checking.
Checks which cannot be performed through static analysis of
source code and are not performed by the hardware must be per-
formed through run time checks in software.

One of the specific issues in this category is that, under the
Nebula architecture, all procedures of a task have common access
privilages throughout the addressing space of the task. This
does not correspond to the scoping rules of the Ada language. Tt
was pointed out in [4]) that display based addressing, with
display entries including the size of the associated data frame,
would allow a much closer mapping of addressing capabilities to
the semantics of the Ada language. It would also simplify com-
piler design and lead to performance enhancements in generated
code. Unfortunately, it is not compatible with the current stan-
dard, even as an upward extension. It is probably a more drastic
revision than can be justified by the benefits it would provide.

For that reason, it is not among the recommendations included in
this report.

I1-2.7

_tant e §
LNt

l. '-&\.
S Y
)

o




P Y .
P U PP, YL Y P,

..... - AR g AR et ghieahh ant S s PRSI C e L ni aaC el pa g

T
L
.
.
)

4.0 Living with the Current Standard
4.1 Non-Solutions

One "solution" to the problem of supporting extensive multitask-
ing on the Nebula architecture in its current form is simply not
to do it. Projects could specify the use of a langquage other
than Ada, or of a dialect of Ada that restricts multitasking.

Failure to support full Ada will probably not be acceptable to
most program offices. It does, however, have the virtue that it
makes clear what is and isn“t being done. This is preferable--at
least technically, if not politically--to another "solution" that
would have the same practical effect, but would conceal it under
a veneer of superficial support for the full language.

There are various "brute force" methods of supporting multitask-
ing that are extremely inefficient if tasking is used extensive-
ly, but perform well if it isn“t. An obvious example would be
the use of tasks or processes at the operating system level--
i.e., as recognized and managed by conventional multiprogramming
operating systems--to model individual tasks within an Ada pro-
gram. Implicit in this approach is the use of separate virtual
address spaces .for the individual tasks, and special operating
system calls to permit access to shared variables.

It is easy for implementors of such approaches to shrug off poor
tasking performance as the penalty for use of "inherently expen-
sive" language features. They can claim that the implementation
is optimized for the most commonly encountered programming
style--~i.e., ordinary procedure calls. Programmers are usually
guick to learn which features of a particular implementation are
efficient and which are expensive. They adjust their coding
technique accordingly, so the claim of optimization for common
practice quickly becomes a "self fulfilling prophecy".

It is important that program offices recognize that there is no
technical merit to any claims that Ada tasking is impossible to
implement efficiently on conventional architectures. Ada tasking
is not fundamentally different from that found in languages such
as Simula, and efficient implementations for these languages do
exist. There are, of course, degrees of efficiency, and the ar-
chitecture on which a language is implemented can significantly
impact its ultimate efficiency. The problem is more acute when
an architecture introduces mechanisms, such as the current Nebula
call mechanism, based on models that are incompatible with the
requirements of a multitasking language. Nonetheless, "reason-
able" implementations of tasking remain possible.

I1-2.8
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4.2 Using the Current Call Mechanism

Assuming that the non-solutions described above have been ruled
out, then Ada implementors constrained to work with Nebula in its
current form face an "interesting" challenge [*]. They must
overcome Or circumvent the memory management limitations of the
current call mechanism with respect to tasking, without causing
excessive overhead for programs not using tasking.

The implementation approach which most nearly conforms to the
current Nebula model would rely on the memory management features
of the architecture to permit dynamic growth in the context re-
gion associated with each task. The memory management scheme is
illustrated in figure 4.2-1, It specifies a set of map regis-
ters, with each register containing the start address for a.seg-
ment of virtual address space, an offset for translation to
corresponding physical addresses within the segment, and a seg-
ment access code. No end address for the segment is required,
since each segment 1is assumed bounded by the start address
above--or by the largest virtual address in the case of the 1last
map entry.

Given the memory mapping capabilities, it is possible to initial-
ly allocate only a modest amount of physical context memory for
each task. The map entry for the region initially allocated is
preceded by several entries describing segments of virtual ad-
dress space marked as inaccessible--no physical memory allocated.
If a task overflows its initially allocated context space, it
will attempt to access one of the inaccessible regions, generat-
ing a memory management trap. At that point, the operating sys-
tem can allocate a physical memory block to the segment generat-
ing the trap. The task can then be resumed with the expanded
context address space. The memory map patches together separate
regions of physical memory into a contiguous region of virtual
address space.

To limit the number of memory faults for tasks with deep recur-
sion, the size of regions allocated should probably double with
each successive fault. To avoid depleting the pool of physical
memory available for allocation as context memory, vacated seg-
ments must be reclaimed by the operating system on each task
switch.

The above scheme is usable for the hardware context stack, be-
cause there is no need to share such memory between tasks. It is
not practical to use it for a data stack, due to the complexities
introduced by sharing. Allocation of data frames, in the general
case, must depend on some type of software mechanism more complex
than a stack, with allocations made from a pool that is common to

{*] "May you live in interesting times" 1is a Chinese curse not
usually appreciated by westerners, unless they have been software
project managers.

PR i




MAP SIZE

SEGMENT
MAP POINTER
REGISTERS DESCRIPTORS
‘—\—)-
USER
SUPERVISOR
MAP SIZE
SEGMENT
DESCRIPTORS -
T — Lo

FIGURE 4.2-la: MAP DATA STRUCTURE

28 29 30 31

PHYSICAL ADDRESS of MAP Q

RESERVED __J

RELOCATE IF SET
PROTECT IF SET

FIGURE 4.2-1b: MEMORY MAP POINTER REGISTERS

0 1 28 29 31 e

VIRTUAL ADDRESS BOUND ENIG

PRIVILEDGE PROTECTION KEY RN
32 6061 63
RELOCATION AMQUNT olo Pa—

RESERVED Lo

Figure 4.2-1lc: Map Entry Format Lo

T

) 4__.-._.

11-2.10 LR




'y . e : " N - " .
[ YRGS RPN ST N Y G T T W o 'ad

all tasks.

The main drawback of the approach just described is that it makes
task switches relatively expensive., It also makes address trans-
lation mandatory, even for embedded software applications which
otherwise have no need for it. This defeats a provision of the
architecture which would allow such applications to avoid un-
necessary overhead by running with address translation disabled.

4.3 Bypassing the Call Mechanism

As an alternative to the approach of the preceding section, it is
possible to bypass Nebula“s procedure call mechanism. The in-
struction set includes more primitive call and return instruc-
tions called "jump to subroutine®™ (JSR), and "return from subrou-
tine"™ (RSR). These instructions do not cause the allocation or
freeing of a hardware context frame, and can be used as the basis
for a "conventional" software implementation of tasking.

With a software based call mechanism, procedure activation
records are allocated following an appropriate algorithm, and
call parameters are passed by storing them in a reserved portion
of the activation record. Since a new context frame is not being
created, registers are inherited across the procedure call and
may need to be explicitly saved.

Activation records for a given task are linked through a dynamic
link field in the activation record; task switches are accom-
plished by saving state information for the current task and
loading it for the new task. State information includes, in the
general case, working registers, program counter, PSW, and frame
pointer. However, if the task switch is the result of executing
an Ada task call or accept statement, working registers and PSW
can be ignored. The compiler simply observes the convention that
working registers and condition codes are not preserved across
task calls, and generates code accordingly. This minimizes task
switch time for the most common type of switching.

The above approach reflects the way multitasking is typically im-
plemented on conventional architectures for languages like Simula
and Modula., It would seem to be safe for Nebula as well. Howev-
er, even this approach encounters certain complexities. Since
use of the formal call mechanism is implicit in the extended op-
code (OPEX) and in the executive service call (SVC) facilities,
then some care is needed in how tasks are allowed to use these
facilities,. If an internal context switch can occur as a result
of an SVC or as a result of an interrupt during execution of a
software implemented OPEX, then the kernel software must include
some provision for managing the open context frame as part of the
internal context switch. Details of this process need to be
worked out, although the process itself would not appear to be
critical to the run time performance of the implementation.
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4.4 Compiler Issues

An alternative approach that will be attractive to many implemen-
tors will be to devise compiler optimization strategies which,
coupled with appropriate run time storage management strategies,
could salvage the current call mechanism. For instance, while it
is not possible to allocate sufficient memory for a separate
stack to each of 500 or more simultaneously active tasks, it is
certainly possible to do so for half a dozen or so. If the bulk
of the tasks, such as those associated with active data struc-
tures, can be transformed into "monitors", as described in [8],
then a half dozen or so stack spaces may be sufficient to imple-
ment the program in question.

Even if there are too many tasks remaining after “"monitorizing"®
to allow assignment of a separate stack space to each, it might
be possible to treat a 1limited number of stack spaces as
resources to be dynamically shared among the active tasks. Inac-
tive context stacks could be stored in dynamic memory, packed to-
gether. To execute, a task”’s context stack would first have to
be copied into a region of open stack space. But because there
would be a number of open stack spaces available, the most active
tasks would normally retain their stack space between periods. of
execution, and most context switches could occur without the need
for stack copying.

It is difficult to estimate how far the process of "optimizing
away" tasks can actually be carried. 1In principle, it should be
possible to write a "program sequentializer" that would transform
any program expressed as a sSet of parallel processes into an
equivalent process involving a single thread of control. This
involves the same kind of tradeoffs that are involved in compiled
vs. interpreted code. More work is done at compile time to save
overhead at run time, but at the cost of considerably greater
software complexity overall. There also tends to be a loss of
flexibility in making changes and greater difficulty in program
debugging.

The problem with depending on compiler optimization schemes and
clever run time storage management strategies for implementation
of multitasking on a single processor 1is that it represents
largely unexplored software territory, and hence must be viewed
as high risk. The algorithms are bound to be complex, and there
is a great deal of room for hidden bugs, even if the theory of
the algorithms is soundly developed. It is an area that deserves
considerably more study, but in general it seems a lot of work to
go to for a result that could more readily achieved by appropri-
ate design of the target architecture.

I1-2.12
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5.0 Options Involving Changes to the Standard
5.1 Fully Compatible Changes

There are three levels of potential changes to the architecture ,
which might be considered. At the level of minimal changes would S
be changes which permit both upward and downward software compa- R
tability with respect to the current version of the standard. L
That is, any changes would be limited to new instructions whose
effects could be simulated through software using the OPEX
mechanism on older implementations of the standard. Properly
speaking, these do not constitute actual architectural changes,
since the current standard explicitly allows for such extensions.

Unfortunately, the OPEX mechanism is of little use in addressing R
the most serious Ada implementation issues. It is firmly rooted I
in the current CALL mechanism, and it is precisely that mechanism -
that causes trouble for Ada implementations. For instance, sup- et
pose an alternate form of the CALL instruction, more suited to -
the Ada tasking model, were desired. Call it DCALL, for "dynamic e
call". The purpose of the instruction would be to allow a task e w N
to execute from a context frame which had been "boxed in" on the v "
stack by the frames of other tasks. DCALL would detect the el
boxed-in condition in some manner--say by comparison of the ey
current context pointer to a global stacktop pointer--and obtain T
storage for the new context frame by locating a new free block.

The DCALL instruction could be implemented in microcode with no
great trouble, but it cannot be simulated in software through the
OPEX mechanism. The problem is that a software implemented OPEX
looks just like a conventional procedure call. 1In particular, it
allocates a new context frame for use by the OPEX software, and
that frame 1is allocated according to the Nebula model of a
guaranteed open stack. If the OPEX is executed by a task with a
boxed-in context frame, the frame allocated for the OPEX would
overstore the frame of another active task.

5.2 Upward Compatible Changes ~ -

This leads us to the second level of changes--those preserving -
upward compatibility with the current standard, but precluding
downward compatibility. This set can be arbitrarily large, pro-
vided that one of the changes is the incorporation of a hardware
"compatibility mode flag" to control interpretation of instruc-
tions. This is a legitimate approach, and has been used in DEC’s

VAX computers to allow compatibility with the architecturallydis- lﬂff}f
similar PDP-11 family. However, for our purposes here, we will sl
consider only changes which do not require a compatibility mode Ry

to achieve upward compatibility. T
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5.2.1 Call Instruction

The upward compatible changes are based on a slightly wmwodified
call mechanism that incorporates a cactus stack algorithm for
context frame allocation in place of the current simple stack
scheme. The algorithm used 1is essentially the same as that
described in Appendix A. It results in a transparently modified
CALL instruction that allows tasks to execute from context frames
that are "boxed in" by frames from other tasks. The instruction
detects the boxed-in condition, and obtains storage for the new
context frame by locating a new free block.

A boxed-in stack is detected by associating with each 1logical
task, at the time it is readied for execution, a "current working
block". The current working block is characterized by a block
limit address, which is maintained in the CPU and used to deter-
mine when there is sufficient space for allocation of a new con-
text frame. This is described in more detail below.

5.2.2 Return Instruction

The modified CALL instruction requires a modified RET instruction
to make it usable. The modification is required in order to al-
low the RET instruction to execute properly when returning to a
procedure whose frame was boxed in. In that case, the RET in-
str.ction cannot get to the caller”s context frame simply by in-
crementing the context pointer by the size of the current context
frame. A dynamic link stored in the current context frame is re-
quired.

The dynamic link need not be stored on every CALL or used on
every RET. It is needed only when the CALL skips over a blocked
region of the stack. There are two bits in the PSW currently
reserved for "implementation dependent usage". One of these can
be used to signal that a dynamic return is required and thereby
control the operation of the RET instruction.

5.2.3 Internal Context Switching

Another concomitant change that is needed for the modified call
mechanism is an instruction to perform internal task context
switching. "Internal"” means that the switch occurs within the
framework of what would currently be considered a single Nebula
task. The context pointer register is changed, establishing the
general registers, parameters, and PSW for a new logical task,
but leaving the memory map unaffected.

The internal context switch instruction must interface with
memory management firmware to preserve the integrity of memory
management data structures. The firmware routines it must invoke
correspond to the CLOSE_TASK_STORE and OPEN_TASK_STORE of appen-

I1-2.14




dix A, The context switch instruction takes four distinct
operands. The first two receive the context pointer and the free
list pointer for the currently executing task. The second two
furnish corresponding values for the task to which execution is
being switched. The second and fourth operands may be the same,
but need not be. If they are not the same, then the storage
pools used for context memory by the two tasks are isolated from
each other. This means that it is possible to allocate a dedi-
cated block of memory for a task that must execute with minimum
interference from other tasks, without resorting to creation of a
separate Nebula task.

5.2.4 Hardware/Software Interface

The algorithms described in appendix A use a "boundary tag"
method ‘for management of the dynamic memory pool. This is con-
venient for hardware based memory management, in that the state
information needed to manage the memory pool is contained in con-
trol words within the pool. They are thus equally accessible to
call mechanism firmware and operating system software. No spe-
cial maps need be maintained in memory accessible only to the
hardware. Aside from the current context pointer itself, the
only information needed for firmware to manage the pool is a
?ointer to the upper or lower bound of the current working block
*].

The limited context information required for hardware management
of the memory pool simplifies the interface between operating
system software, which must set up the pools initially and modify
them on occasion, and the firmware, which manages the pools dur-
ing program execution. Although allowing software access to
structures that are manipulated by firmware might initially ap-
pear dangerous, the control words are protected by the memory ac-
cess codes of Nebula®s memory mapping system. They would reside
within memory segments marked as "context only", and could not be
corrupted by unprivileged software.

5.2.5 Hardware Implications

There is not much question that a hardware based capability for
cactus stack management of context frames would make multitasking
more efficient., A central gquestion in evaluating the proposed
changes, however, is the degree to which the addition of this ca-
pability impacts hardware complexity and the execution speed of
normal procedure calls and returns.

With reasonable hardware support, the proposed changes need not

[*] If the stack grows upward, then the pointer is to the upper
bound, If it grows downward, then the pointer is to the lower
bound.
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impact execution speed at all. Nor is their impact on hardware
complexity particularly significant. A register containing the
limit address of the current working block is required, and a
stackpointer register separate from the context pointer register
is convenient. The limit register is used to test, after deter-
mining the size of a new context frame, whether there 1is suffi-
cient room for the frame within the current working block. If
there is, the action taken is identical to that taken under the
current call mechanism. Extra cost is incurred only if the test
fails, which corresponds to what would be a memory fault with the
current call mechanism.

If needed for highest performance, the test for block overflow
can be made to consume zero time in the normal case. The test
can be initiated in parallel with the micro instruction sequence
appropriate to passing the test. Success of the test would do
nothing, while failure would generate an overriding branch in the
micrologic. The microcode accessed by the overriding branch
might have to undo actions initiated by the default code, but its
task in this respect would likely be simpler than it would be
under the current mechanism. In the latter case, the overflow is
not detected until the firmware attempts to access inaccessible
memory, which may be much later in the micro sequence.

Masking additional execution time for the return instruction is
even easier than it is for the call instruction. The action ap-
propriate on a return instruction is completely determined by the
combination of the dynamic return bit in the PSW and a "history
bit" indicating the prior state of the dynamic return bit. These
bits can be used to gate or modify the initial control store ad-
dress for the return instruction. If a normal return is ap-
propriate, it is executed immediately with no overhead for test-
ing or unnecessary actions.

5.3 Incompatible Changes

Given the political complications of changing standards and the N
inertia that published standards quickly acquire, it is much more !
comfor table to propose upward compatible changes than to try to -
justify incompatible ones. 1In the case of MIL-STD 1862, however, S -
there is 1little technical reason to 1limit consideration of RS
changes to those that are upward compatible. Hardware under AT
development is now limited to prototype implementations of the R
standard, and will remain so for some time. There is no signifi- T
cant accumulation of software developed for the current standard ss e
that must be protected. Provided that proposed changes are not so :
extensive as to invalidate experience gained in implementation of
prototypes, they deserve consideration on their technical merits.

Although the wward compatible changes described in section 5.2 o
above remove the obstructions to use of the Nebula call mechanism q
for implementing Ada tasking, they fall short of providing a -
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really efficient call mechanism. 1In particular, they leave the
allocation of procedure data frames to prologue software. This
deficiency, not serious in the absence of tasking when a simple
stack policy of storage management can be used, becomes more .
serious in the presence of tasking. ).

5.3.1 Hardware Allocation of Data Frames L

If "cactus stack" allocation of context frames is introduced into
the hardware to salvage the basic call mechanism, it would seem -
reasonable to use it for allocation of the data frames as well. ]
The procedure descriptor, which currently gives the number of ‘
parameters and the maximum number of registers used by the pro-
cedure, can be amended to include also the size of the basic data
frame. This allows the call instruction microcode to allocate
the data frame automatically. 1Tt also allows call parameters to
be stored at the base of the data frame rather than in the con-
text frame, solving the uplevel parameter referencing problem.

i

Using hardware based memory management for data frame allocation
causes certain complexities that do not arise when it is confined
to allocation of hardware context frames., The complications are
not serious, in that they have various reasonable solutions, but
they do require that solutions be adopted. For example, some
mechanism must be provided to return the frame pointer allocated
by the call instruction microcode for use by subsequent compiler
generated code. One obvious alternative is to provide the call
instruction with an additional operand specifying where the frame
pointer is to be stored. This would normally be a register, and L
parameters would be referenced as local data using the byte in- el
dexed mode. An alternative to this, suggested by Jim Elkins of y
Digicomp Research, Inc., is to hold the frame pointer in an -
internal CPU register until it is accessed by a specific new
instruction--"get frame pointer”. This is less efficient than
the former method, but has the advantage of not requiring changes
in the operands of the OPEX and SVC instructions. These also use T
the call mechanism. —

An additional complication has to do with protection of the

memory management block control words from user software. This

is not a problem when the control words reside in segments used

for context memory only, but it is a potentially serious problem

when they reside in segments used for general access by user _
software. There would appear to be only two viable solutions to »
this problem. One is simply to use a memory management scheme -
other than the boundary tag method, in which the control struc-

tures could reside in protected memory separate from the memory

whose allocation they control. There are such algorithms, but

none of them appear to be as simple and well suited for the type

of usage regquired as the boundary tag method. A better alterna-

tive is discussed below. ’
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5.3.2 Write Protect Word and "Uninitialize"

5.3.2.1 System Usage A

. T

A more attractive way to protect dynamic memory control struc-
tures would be to provide the capability to write protect indivi-
dual memory words regardless of the access code of the segment in
which they reside. This not only solves the particular problem
< of protection for dynamic memory control words, but it provides a
E. very useful mechanism of quite general value. It simplifies the
:

RN e’
el O

development of software debugging tools, and allows them to have
capabilities that simply cannot otherwise be implemented. It
aids detection and diagnosis of errors in operational software,

A and maps well onto Ada“s concept of private variables.

; A similar and complementary capability to write protect by word
s is hardware detection of uninitialized variable references
F! through the use of an "uninitialize" instruction. This is a par-

ticularly useful capability, in that it detects a common and in-
sidious type of software error against which there 1is no other
satisfactory method of protection.

To be most generally useful, the ability to write protect and to
set the uninitialized state on a memory variable should be avail-
able to user software. At the same time, the capability must be
restricted so that user software cannot alter the status of words
it does not logically "own". With hardware allocation of data
frames, there is a reasonably straightforward way to do this.
The hardware Kknows the location and size of the current
procedure”’s data frame, and can restrict alteration of protection
and initialization bits in the user mode to the appropriate seg-
ment of memory. The assumption here is that a procedure or func-
tion "owns" exactly that memory located within its 1local data
frame, which seems reasonably close to the intent of Ada“s seman-
tics.

I A Y Tl 0 4
R 5

la’

There is one qualification on the last statement above., Ada de-
fines objects of access variables to be allocated from heap
storage independent of a subprogram”s local data frame. To allow
user software to write protect or set uninitialized such objects,
it might be desirable to provide a new segment access code that
- would allow unrestricted alteration of word write protect and in-
itialization status. Several reserved access codes are currently ERKR,
e available, so such a function is feasible. As a refinement, the e
g combination of "uninitialized, write protected” on a word could .Tvﬁ!!
. be interpreted to prohibit user alteration of its status as well SO
as normal read/write access. This would allow embedding of LA
hardware or operating system protected variables within a segment - :
with otherwise unrestricted user permissions, which is useful for
implementing a secure, general purpose data heap.

"

Clug o 2 4
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5.3.2.2 Hardware Impact

Detection of uninitialized variable references is relatively easy
to implement. It amounts, mainly, to an expansion of machine
word size by one bit. When a word is written, the “uninitial-
ized" bit is cleared. When it is read, the bit is tested, with a
trap generated if the bit is not cleared. There is a special in-
struction which sets the bit in a specified word or block of
words.

Write protection by word, on the other hand, 1is sometimes con-
sidered an expensive feature to implement in current generation
machines. If the most straightforward implementation approach is
followed-- i.e., reading the word and testing its write protect
bit in the CPU prior to writing--memory bandwidth on write opera-
tions is effectively halved (*]. However, there are reasonable
alternative approaches which are well suited to current technolo-
gies.

Memor ies are usually organized as independent banks of storage
with buffered access to a common bus. By adding a minimal degree
of intelligence to the memory to bus interface, it is possible to
convert a write operation locally to a read of the appropriate
write protect bit, meanwhile latching the write data and address.
The status of the write protect bit is returned immediately to
the CPU, which then proceeds with its next operation. The
latched write data and address are held within the memory bank
until there is an idle cycle in which it can be stored, or until
the next write to the same ovank. If the latter occurs first, the
memory bank must signal a hold while it stores the previously
latched data. However, with interleaved addressing--low order
bits select bank--there is a high probability of a read or write
operation to another bank prior to the next write to the original
bank. This gives the original bank the opportunity to store the
latched data, making delays rare.

With a 32 bit machine, the 6% increase in memory size which the
bits for write protection and detection of uninitialized variable
references represent is hardly a major consideration. The cost
of memory chips is a small part of total hardware cost, and the
cost of hardware is a small part of total system costs. It is
now routinely eclipséd by the cost of software, and any feature
which helps to reduce the cost of software development and to
enhance reliability without impacting performance is probably
justified.

Introduction of write protect and uninitialized variable bits
does raise some design questions which must be answered. What
should happen, for instance, when a single byte within an wunini-

(*] Ironically, on older core memory machines, this approach cost
nothing, since a read before write was essential to the operation
of the memory.
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tialized word is stored? The obvious answer, that it causes the
status of the word to change to initialized, lacks something in
aesthetic appeal. It seems to conflict with the notion that
bytes are individually accessible. Yet extending initialization
status protection to individual bytes seems like unnecessary
overkill.

A more substantial question is how initialization and write pro-
tect bits should be handled during I1/0. For byte stream I/O to
and from serial devices, it is probably reasonable to ignore the
pits. The convention would be that anything input in this manner
would be considered as initialized and not write protected, ex-
cept as provided by the access code for the segment into which it
was read. The real problem is with disk I/0 of program and data
images. If automatic swapping 1is envisioned as an adjunct to
virtual memory, it would seem essential to use a word oriented
disk device that included storage for the write protect and ini-
tialization status bits. This 1is certainly possible, but it is
rather unconventional,

Despite these complications, it is the author”“s conviction that
word oriented write protection and initialization status detec-
tion would be of major value in reducing software 1life cycle
costs. This is based on extended experience on several large
aerospace software projects, covering design, development and
maintenance phases. The benefit that could be expected is almost
certainly sufficient to justify inclusion of these capabilities
in any modern architecture claiming to be oriented toward reduc-
tion of software costs.

5.3.3 A Further Note on Compatibility

Strictly speaking, hardware allocation of data frames can be
achieved without sacrificing upward compatibility. 1Tt is merely
necessary to make the new call a separate instruction, rather
than a modification of the existing instruction. However, a new
return instruction would also be required to complement the call.
The Nebula vectored operations (interrupts, traps, service calls,
and unimplemented op codes) couldn”t use hardware allocation of
data frames if upward compatibility were preserved, since there
is no convenient way to distinguish new forms of these operations
from the existing forms. For these reasons, an outright change
in the call mechanism, rather than introduction of new instruc-
tions, is probably preferable. It would give a cleaner, more
consistent architecture. As noted in section 5.2.3 above, the
new forms can be implemented with no execution time penalties
even when tasking is not used. 1In the absence of any significant
body of old software to protect, there is no technical reason to
retain the older forms.
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Appendix A: Memory Allocation for Tasking Environments

A.0 Allocation Algorithm

The algorithm used to allocate activation records is an important
feature in any approach used to the management of environments in
the presence of tasking. The algorithm must give pecrformance
reasonably close to that of a simple stack algorithm for the im-
portant subclass of Ada programs which do not employ tasking. At
the same time, it must efficiently handle multitasking and the
allocation of activation records whose lifetimes are not always
conveniently nested.

Dynamic allocation of activation records on each procedure call
is an obvious solution to the problem of non-nested lifetimes.
However, it is an inherently expensive solution, and imposes a
significant execution penalty on programs that do not require its
generality. Even with multitasking, dynamic allocation is more
gsneral than actually required, since procedure activations
remain "last in, first out"” within any given task. A better pol-
icy 1is to use stack allocation within any given task as long as
possible, with provision to detect overflow from the current re-
gion of memory and switch to new region when necessary. This is
similar to the approach described, for instance, in [6].

A.1 Simple Frame Management

Figures A-1 and A-3 are Ada packages describing a "stack orient-
ed"” allocation algorithm suitable for tasking applications. Fig-
ure A-1 describes the "cactus stack" frame management algorithm
proper. Figure A-3 describes an associated dynamic memory
management algorithm which is invoked by the frame management
routines when departures from simple stack management are re-
quired. The packages presented are intended only to illustrate
the algorithms; they would not be visible in an actual Ada pro-
gram. They would be implemented in assembly language and used by
compiler code generator in subprogram prologue and epilogue code
sequences,

In essence, the frame management algorithm works as follows:

1. When execution switches to a new task, a 1large block
of memory is obtained from the memory management sys-
tem. A minimum size is requested, but no maximum is
set; the memory manager simply returns whatever is
currently available, so long as it is larger than the
specified minimum.

The block returned by the memory manager is used as a

stack by the task and its procedures until either (a)
the task terminates, (b) the stack overflows, or (c¢)
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package FRAME_MANAGER is
procedure GET_FRAME (SIZE: in INTEGER);
procedure POP_FRAME ();

end FRAME_MANAGER;

package body FRAME MANAGER is
with UNCHECKED_CONVERSION;

with MEMORY_ MANAGER; -- GET_BLOCK, CHANGE_BLOCK, etc.
with LOW_LEVEL_DEFS; ~- type ADDRESS, WORD_SIZE defined
type FRAME_HDR is
record
SIZE: INTEGER; -- size of associated frame
LINK: ADDRESS; -- ptr to caller’s frame

end record;
FH_SIZE: constant := 2 * WORD_SIZE;

type FH_PTR is access FRAME_HDR;
function FH_PTR is new
UNCHECKED_CONVERSION (ADDRESS, FH_PTR);

STACKPTR, LIMIT: ADDRESS:; -- define state of current block
CURRENT_FRAME: ADDRESS -- used by generated code

procedure GET_FRAME (SIZE: in INTEGER) is
begin
if STACKPTR + SIZE > LIMIT then -- block overflow
GET_BLOCK (SIZE + FH_SIZE, LIMIT, STACKPTR) ;
end if;
FH_PTR(STACKPTR).SIZE := SIZE;
FH_PTR(STACKPTR).LINK := CURRENT_FRAME;
CURRENT_FRAME := STACKPTR;
STACKPTR := STACKPTR + SIZE + FH_SIZE;
end GET_FRAME;

procedure POP_FRAME () is
begin
TOP: ADDRESS;

- TOP := CURRENT_FRAME + FH_PTR(CURRENT FRAME).SIZE + FH_SIZE;

- if TOP /= STACKPTR then -- change current block
o CHANGE_BLOCK (LIMIT, TOP);
[ end if;

STACKPTR := CURRENT_FRAME;
CURRENT_FRAME := FH_PTR(CURRENT_FRAME) .LINK;
end POP_FRAME;

TV I vevvry
. .

P
P

end FRAME_MANAGER;

Figure A-1
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2 package FRAME_MANAGER is
: with LOW_ LEVEL _DEFS; -- ADDRESS, etc. defined
" procedure GET FRAME (SIZE: in INTEGER):;
: function EXPAND_FR (INC: in INTEGER) return ADDRESS;
v procedure SHRINK FR (INC: in INTEGER);
procedure POP_FRAME ();
end FRAME_MANAGER;
package body FRAME_MANAGER is
- with UNCHECKED CONVERSION'
- with MEMORY MANAGER- ~- GET_BLOCK, CHANGE BLOCK, etc
type FRAME HDR is
record
- SIZE: INTEGER; -- size of associated frame
: LINK: ADDRESS: -- ptr to caller’s frame
: EXTEN: ADDRESS; -- link to non-contiguous extension
; end record;
FH_SIZE: constant := 3 * WORD_SIZE;
type FH PTR is access FRAME _HDR;
function FH _PTR is new
UNCHECKED_CONVERSION (ADDRESS, FH_PTR) ;
STACKPTR, LIMIT: ADDRESS; -- define state of current block
CURRENT_FRAME: ADDRESS -- used by generated code
CURRENT_EXTEN: ADDRESS -- normally = CURRENT_FRAME
b procedure GET_FRAME (SIZE: in INTEGER) is
begin
5 NEW_TOP: ADDRESS;
- NEW_TOP := STACKPTR + SIZE + FH_SIZE;
- if NEW TOP > LIMIT then -- block overflow
b GET_BLOCK (SIZE, LIMIT, STACKPTR):;
e end if;
> FH_PTR(STACKPTR) .SIZE := SIZE;
. FH PTR(STACKPTR) LINK := CURRENT_FRAME;
FH PTR(STACKPTR) EXTEN := 0;
CURRENT_FRAME = STACKPTR-
CURRENT _EXTEN := STACKPTR;
- STACKPTR := NEW_TOP;
¢ end GET_FRAME;
. Figure A-2.1
L
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procedure EXPAND_FR (INC: in INTEGER) is
begin :
NEW_TOP: ADDRESS;

NEW_TOP := STACKPTR + INC;

if NEW_TOP > LIMIT then -~ block overflow
GET BLOCK (INC + FH _SI1ZE, LIMIT, STACKPTR);
FH PTR(STACKPTR) SIZE := INC;
FH_PTR(STACKPTR) LINK := CURRENT_EXTEN;
FH PTR(STACKPTR) EXTEN := 0;
FH PTR(CURRENT EXTEN) .EXTEN := STACKPTR;
CURRENT EXTEN := STACKPTR;
STACKPTR := STACKPTR + INC + FH _SIZE;
return CURRENT ] EXTEN + Fd SIZE,

else ~- fits in current block
TOP: ADDRESS;

TOP := CURRENT EXTEN + FH PTR(CURRENT EXTEN).SIZE + FH SIZE;

if TOP /= STACKPTR then -- reentering empty block
NEW_TOP := NEW TOP + FH_SIZ2E;
FH PTR(CURRENT “EXTEN) . EXTEN := STACKPTR;
FH PTR(STACKPTR) SIZE := INC;
FH_PTR(STACKPTR) LINK := CURRENT_ EXTEN;
FH_PTR(STACKPTR).EXTEN = 0;
CURRENT_EXTEN := STACKPTR;

else
FH PTR(CURRENT EXTEN) .SIZE :=

FH_PTR (CURRENT_] EXTEN) .SIZE + INC;
end if;
STACKPTR := NEW_TOP;
end if;
end EXPAND_FR;

Figure A-2.2
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procedure SHRINK_FR (INC: in INTEGER) is
begin
TOP: ADDRESS;

TOP := CURRENT EXTEN +
FH_PTR(CURRENT_EXTEN) .SIZE + FH_SIZE;

Ei if TOP /= STACKPTR then -- change current block
., CHANGE_BLOCK (LIMIT, TOP);
] end if;

if INC >= FH _PTR(CURRENT_EXTEN) ,SIZE then
-- vacating whole exten.
STACKPTR := CURRENT_EXTEN;
CURRENT_EXTEN := FH PTR(CURRENT EXTEN) . LINK;
if INC > FH PTR(CURRENT '_EXTEN) . SIZE then
SHRINK_FR (INC - FH_PTR(CURRENT_EXTEN).SIZE);
end if;
else -~ reducing size only
FH_PTR (CURRENT_EXTEN) .SIZE :=
FH PTR(CURRENT EXTEN) .SIZE - INC;
STACKPTR := TOP - INC'
end if;
end SHRINK_FR;
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procedure POP_FRAME () is
begin
g TOP: ADDRESS;

NS - oo

-. TOP := CURRENT_EXTEN +

- FH PTR(CURRENT EXTEN).SIZE + FH SIZE;

ii if TOP /= STACKPTR then -~ change current block
) CHANGE_BLOCK (LIMIT, TOP);

4 end if;

: while CURRENT _EXTEN /= CURRENT _FRAME loop

: CURRENT ] EXTEN := FH PTR(CURRENT ' EXTEN) . LINK;
P TOP := CURRENT EXTEN +

- FH_PTR(CURRENT_EXTEN).SIZE + FH_SIZE;
[! CHANGE_BLOCK (LIMIT, TOP);

- end loop;

. STACKPTR := CURRENT_FRAME;

- CURRENT_FRAME := FRAME PTR(CURRENT FRAME) .LINK;
- CURRENT EXTEN := CURRENT _FRAME;

; while FH_PTR(CURRENT_EXTEN).EXTEN /= 0 loop

q CURRENT '_EXTEN := “FH PTR(CURRENT FRAME) . EXTEN;
& end loop;

" end POP_FRAME;

b,
g end FRAME_MANAGER;

{ Figure A-2.3
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execution switches to another task. In case (a), the
entire block is returned to the memory manager. In
case (b), a new block is requested from the memory
manager, and the frame for the call causing the over-
flow 1is allocated from the new block. The new block
is referred to as an overflow block. In case (c), the

portion of the block not in use by the current task is
returned to the memory manager prior to switching exe-
cution.

3. During execution of a task, a procedure return may
cause an overflow block to be vacated. For efficien-
cy, the overflow block is not immediately returned to
the memory manager. This avoids the need to reallo-
cate the block in case a new procedure call precedes
the next return, The global stacktop pointer is left
at the base of the vacated block; on a subsequent pro-
cedure exit, the inequality of the stacktop pointer
with the sum of the current frame pointer and current
frame size signals that the frame being released re-
sides outside the overflow block. This means that the
overflow block should be released to the memory
manager and the block containing the current frame be
made the new working block.

A.2 Frame Management with Extensions

The frame management algorithm of figure A-1 is overly simple, in
that it does not provide for the handling of frame extensions.
These are useful in practice to accommodate variable sized struc-
tures which cannot be allocated in the basic frame. This is con-
siderably more efficient than the alternative of allocating such
structures dynamically from the general purpose data heap. Frame
extensions can also be used for temporary storage that 1is not
needed throughout the lifetime of an activation record, increas-
ing storage efficiency.

A frame management routine that provides for frame extensions is
illustrated in figure A-2. 1In addition to the entries GET_FRAME
and POP_FRAME of figure A-1, it provides the entries EXPAND_FR
and SHRINK_FR to respectively request a frame extension and to
release a specified amount of memory from the top of the frame.

The frame extensions handled by the routine in figure A-2 are of
two forms--contiguous and non-contiguous. A contiguous extension
is simply an additional block of storage contiguous with an ex-
isting frame or frame extension. The effect of allocating a con-
tiguous extension is simply to increase the value in the size
field of the associated frame or frame extension.

When there is insufficient room in the current working block to

allocate a contiguous extension of a requested size, a non-
contiguous extension must be allocated. An overflow block Iis

II-2.A6
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created, the requested extension is allocated from that block,
and a pointer to the extension is stored in the extension 1link
field of the preceding frame or frame extension. The format of a
non-contiguous extension is identical to that of a regular frame,
except that its 1link field is a back pointer to the frame or
frame extension to which it is attached, rather than to the
caller’s frame. On a return from a procedure, all non-contiguous
frame extensions are released prior to releasing the basic frame
of the exiting procedure.

A.3 Dynamic Memory Management

A memory management policy that would appear to work well in sup-
port of the routines of figures A-l and A-2 is a derivative of
Donald Knuth“s "boundary tag method"” [12]. An Ada package imple-
menting the policy is shown in figure A-3. The data structure on
which it is based is shown in figure A-4. The implementation as-
sumes byte addressing with four-byte words. Allocations are in
integral words, so the two low order bits of ¢tre& block size
specifier in the block control word are available. One of these
records the busy/free status of the block above the control word,
and the other the block below. Although the basic boundary tag
method assumes block size specifiers both above and below each
block, the upper block size specifier is needed only if the block
is free. It can therefore be allocated as the last word of the
block itself, 1limiting memory overhead for control words to one
word per block.

An important feature of the memory management algorithm illus-
trated is the method in which the block free list is maintained.
At the start of program execution, the free list will presumably
consist of a single block representing all the memory reserved
for allocation of activation records. As task switches cause
portions of this block to be broken off, the space begins to
fragment. However, the free list is maintained as a circular
list with a rotating head. Released blocks are initially insert-
ed at the head of this list, but when a block becomes too small
to satisfy a request, the list head pointer advances over it,
leaving it at the tail of the list., The result is that dwell
time for small blocks prior to reexamination is maximized. This
means that there is maximum opportunity for merges with adjacent
blocks before the head pointer returns to the block, so that free
blocks near the head of the list to be as large as possible.

It is important to the efficient operation of this algorithm in
support of frame management that memory contained on its free
list be used only for allocation of activation records. If the
same free list is used to satisfy requests for dynamically allo-
cated program structures, fragmentation becomes much more seri-
ous, It 1is also helpful if a reasonable minimum ratio between
free space and allocated space is maintained. If the ratio falls
below about 33%, the memory manager should probably request addi-~
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package MEMORY_ MANAGER is
with LOW_LEVEL_DEFS;

procedure GET_BLOCK (
MIN_SIZE: in INTEGER; e
BLOCKTOP: in out ADDRESS; ——

STACKTOP: in out ADDRESS: . i
); =-- handles oferflow from current block

procedure CHANGE_BLOCK ( PR
BLOCKTOP: in out ADDRESS; }f;g«
STACKTOP: in ADDRESS o el
); =-- for procedure return causing change in current block 1

procedure CLOSE_TASK_STORE (
- BLOCKTOP: in ADDRESS;
: STACKTOP: in ADDRESS;
FLH_SAVE: out FBC_PTR;
}; =-- ©prepare storage for suspension of task

procedure OPEN_TASK_STORE (
BLOCKTOP: out ADDRESS;
STACKTOP: in ADDRESS;
FLH_SAVE: in FBC_PTR;
); -- prepare storage for execution of suspended task

end MEMORY MANAGER;

package BLOCK_CTL is
type CTL_ WORD is limited private;
function BL SIZE (C: CTL _WORD) return INTEGER;
function ABOVE _FREE (C: CTL , WORD) return BOOLEAN;
function BELOW FREE (C: CTL WORD) return BOOLEAN;
procedure SET BLSIZE (C: CTL WORD; S: INTEGER);
procedure SET _ABOVE_FREE (C: CTL_WORD);
procedure SET_BELOW FREE (C: CTL_WORD);
procedure SET_ABOVE_BUSY (C: CTL_WORD);
procedure SET_BELOW BUSY (C: CTL_WORD);

private
type CTL_WORD is new INTEGER;

end BLOCK CTL-

Figure A-3.1
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package body MEMORY MANAGER is

with UNCHECKED CONVERSION; S
with BLOCK_CTL; g
type FREE_BLOCK CTL_REC;

1
T
A

type FBC PTR is access FREE _BLOCK_CTL_REC;
type FREE_BLOCK_CTL_REC is

record Ry

PREV: FBC_PTR; -- may be overstored in busy block S

NEXT: FBC_PTR; -- may be overstored by unused byte - 5@

-- count on closing current block; !

-- otherwise preserved as free list .

[ -- ptr; block limit ptr points here %

CTL: CTL_WORD; -- size of block below, plus busy/ ,‘:

€ -- free bits for blocks above and .'gj

" -- below; only word always valid f-.
p

ABOVE_SIZE: INTEGER; -- overstored with data if 1

-- associated block is busy

end record;

!
&l ..

e procedure GET_BLOCK ( 1
S MIN SIZE: in INTEGER;
BLOCKTOP: in out ADDRESS; e
L STACKTOP: in out ADDRESS;
.. ) is

begin

PTR1, PTR2: FBC_PTR;
UNUSED BYTE COUNT' INTEGER;

-- get free list head ptr from current block and store

&: -- unused byte count at top of stack
[ - PTRl := BLOCKTOP - 1 * WORD_SIZE; e
9 PTR2 := PTR1.NEXT; -- (free list head ptr) —_
b if PTR2 = NULL then -- free list empty R
-, raise MEMORY_ALLOC_EXCEPT; R,
Lt end if; L
s PTRl := PTR2; e
UNUSED_BYTE COUNT := BLOCKTOP - STACKTOP; e,
® INT_PTR (STACKTOP) .ALL = UNUSED BYTE_COUNT; q
\ - - RS
O
::~ﬂ Figure A-3.2 ;5§‘
Fk.-. .":‘:”‘:‘
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end;

-~ find new block of suitable size; allocate for stack use
while BL_SIZE (PTR2.CTL) < MIN SIZE loop
PTR2 := PTR2.NEXT; -
if PTR2 = PTR1l raise MEMORY_ALLOC_EXCEPT;-
end loop;
if PTR2.NEXT = PTR2 then
PTR2 .NEXT := NULL:;
else
PTR2 .PREV.NEXT := PTR2.NEXT;
PTR2 NEXT.PREV := PTR2.PREV;
end if;
SET BELOW BUSY (PTR2.CTL); -- mark block busy
PTRI = PTR2 - BL_SIZE (PTR2.CTL);
SET_ABOVE_ﬁUSY (PTR1.CTL) ;
BLOCKTOP := PTR2 + 1 * WORD_SIZE;
STACKTOP := BLOCKTOP - BL_SIZE (PTR2.CTL) ;

-~ taking last free block

-- unlink from free list

procedure CHANGE BLOCK (

BLOCKTOP: in out ADDRESS;
STACKTOP: in ADDRESS;

-- input value is 0ld block
-- points into new block

) is
begin

PTRl, PTR2: FBC_PTR;

-- set free list head ptr in new block to block released
~- (inserts o0ld block at head of free list)

PTR1 := FBC_PTR(STACKTOP + UNUSED_BYTE_COUNT - WORD_SIZE);
PTR1.NEXT := FBC_PTR(BLOCKTOP - WORD_SIZE):

:: set return parameter to top of new block

;EOCKTOP = PTRl + WORD_SIZE:

:: free old block

;;Rl := PTR1.NEXT;

PTR1.PREV := PTR1.NEXT.PREV; -~ (free list tail ptr)

SET_BELOW_FREE (PTR1.CTL); -- mark freed block free
PTRZ := PTR1 - BL_SIZE(PTR1.CTL);

Figure A-3.3
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if BELOW_FREE (PTR2.CTL) then -- merge freed block with
-=- one below, prev. freed

NEW_SIZE: INTEGER;

NEW_SIZE := BL_SIZE (PTR1.CTL) + BL_SIZE (PTR2.CTL) ;
SET_BLSIZE (PTR1.CTL, NEW SIZE),
PTRZ := PTRl - NEW _SIZE;
SET_BLSIZE (PTR2. CTL, NEW_SIZE);

else
SET_ABOVE_FREE (PTR1.CTL);

end if;

end CHANGE_BLOCK;

procedure CLOSE_TASK_STORE (
BLOCKTOP: in ADDRESS;
STACKTOP: in ADDRESS;
FLH_SAVE: out FBC_PTR;
) is
begin
OLD_SIZE, NEW_SIZE, RES_SIZE: INTEGER;
~-- o0ld, new, and residual block sizes
UNUSED_BYTE_COUNT: INTEGER;
PTR1, PTR2: FBC_PTR;

UNUSED_BYTE_COUNT := BLOCKTOP - STACKTOP;
PTR1 := FBC PTR (BLOCKTOP - WORD_SIZE) ;
RES_ SIZE := UNUSED BYTE _COUNT - WORD _SI1ZE;
-- size of free part of current block, if split
if RES_SIZE >= MIN_SPLIT_SIZE then

-- split block into one busy, one free block

P PE T .
Pt s R .
i, v )
RSN
it

K e SN
)

OLD_SIZE := BL_SIZE (PTR1.CTL):;

NEW_SIZE := OLD_SIZE - UNUSED_BYTE_COUNT;

SET_BLSIZE (PTR1.CTL, RES_SIZE);

SET BELOW FREE (PTR1l);

PTRZ := STACKTOP - WORD_SIZE;

SET_ABOVE_FREE (PTR2. CTL),

PTR2 .ABOVE _SIZE := RES_SIZE;

SET_BELOW_| BUSY (PTR2.CTL);

SET_BLSIZE (PTR2.CTL, NEW _SIZE):;

INT PTR (STACKTOP).ALL := 0; -- unused byte count

-- insert free portion of block in free list v

PTR1.PREV := PTR1.NEXT.PREV;
PTR1.NEXT.PREV := PTRI; Lt
PTR1.PREV.NEXT := PTRIl; N

Figure A-3.4
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-- return parameter saves free list while task inactive
FLH_SAVE := PTR1;
else
FLH_SAVE := PTR1.NEXT;
INT PTR (STACKTOP).ALL := UNUSED_BYTE_COUNT;
endif;
end CLOSE_TASK_STORE;

procedure OPEN_TASK_STORE (
STACKTOP: in ADDRESS;
BLOCKTOP: out ADDRESS;
FLH_SAVE: in FBC_PTR;

) is

begin
PTR: FBC_PTR;
NEW_SIZE: INTEGER;

PTR := STACKTOP + INT_PTR (STACKTOP).ALL - WORD_SIZE;
if ABOVE _FREE (PTR. CTL) then

-- merge with upper blk

PTR := PTR + PTR.ABOVE_SIZE + WORD_SIZE;
NEW_SIZE := PTR.ABOVE SIZE + BL SIZE (PTR) + WORD_SIZE;
SET BLSIZE (PTR.CTL, NEW SIZE),

-- unlink from free list

PTR.PREV.NEXT := PTR.NEXT;
PTR.NEXT.PREV := PTR.PREV;
SET_BELOW_BUSY (PTR.CTL);

end if;

-- set up new block for stack use

PTR.NEXT := FLH_SAVE;
BLOCKTOP := PTR + WORD_SIZE;

end OPEN_TASK_STORE;

end MEMORY MANAGER;

Figure A-3.5
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tional system memory. This provision is not included in the algo-
rithm of figure A-3, but would probably be a desirable addition
to any actual implementation in support of tasking.
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PART 1 - BACKGROUND

The Nebula Instruction Set Architecture (ISA) 1is a 32-bit, gereral-
register design originally developed for use in military embedded-
computer applications. Nebula began as part of an effort "to provide
the US Army with a family of instruction-set-compatible computers of
varying performance capabilities" [1]. Iritially, this "Military
Computer Family" (MCF) project attempted to select an existirg computer
architecture as the Standard.' After a 2-year analysis of a rumber of
commercial ard military machines, the Army selected ir 1973 a "'best!
commercial architecture to fit its tactical requirements" [2].
Proprietary issues, however, eventually led to the abandonment of this
approach. In September, 1979, the Army, through CORADCOY, cortracted
with a group at Carregie-itellon Uriversity to develop a rew
architecture, now known as "Nebula", The initial Nebula specification,
published as “IL-STD-1862 on May 28, 1980, has sirnce beer. revised
several times; the version upon which this report is based is MIL-
STD-1862A, "Date TBD" [3], issued in late September, 1981.

Air Force involvement with the Nebula project dates from September,
1980. Although both services share the goal of developirng a hardware
Stardard for embedded systems, the plarred Air Force uses ard
acquisition policies vary significantly from those of the Army. In
considering questions of software portability, it is essential to rote
how the Air Force and Army differ ir their plans for multi-verdor
participation:

- The Army will procure up to a 5-year supply of Nebula computers

from a single source. Design efforts are now under way by four

computer marufacturer: -- IBM, RCA, Raytheor, and (jointly) GE

11-301
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Nebula and Portability Background

ard TRW -=- to construct "Advanced Development™ machines meeting
the Nebula specifications. The Army will evaluate these machires
for performance, cost, etc., and select two of the verdors to
build "Ergir.eerirg Developmerit™ models. After a final analysis
by the Army, one of these two machires will be choser, ard
competitive bids (oper to all vendors, not just those previously
involved) solicited for up to a S-year supply of that machire.
At that point, the ISA may be reviewed and modified, and another
rourd of competitive design and implementatiorn will begin. (The
first productiorn units based on the initial Nebula design are
scheduled to be fielded in 1987.) By such periodic reviews ard
re-designs, the Army hopes to have incorporated within its
embedded systems state-of=-the-art technology while also

maintaining a standard ISA,

- The Air Force, on the other hand, intends to have cortiruous
competition among vendors for ever faster, cheaper, and more
reliable computers that implement a standard ISA. An
"acereditation approach" is planned, through which any supplier's
machine may be acquired so long as it satisfies the
specifications of the Standard.

Because of this difference in approach, the Air Force must place very
heavy emphasis on the clarity, precision, and completeness of its ISA
Standard, while the Army may be prepared to demand far less in these
areas. This paper is part of an effort commissioned by the Air Force to
help determine whether Nebula meets its requirements for an ISA

Standard.
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Nebula and Portability Concepts

PART 2 - CONCEPTS OF PORTABILITY

2.1. Nebula's Goals

The "Scope" ard "Purpose" sectiors of MIL-STD-1862A read, 1ir their
entirety:

This star.dard defires ‘the Nebula Instructiorn Set
Architecture, The 1instruction set architecture includes
all irformation required by a programmer in order to write

any time independent program that will execute on computers
cor.formirg to this starndard.

The purpose of this document is to define the Nebula
P Architecture, independent of any specific implementation or
- verdor, with sufficient precision to permit independer.t
(] implementations of this architecture that execute identical
k- programs in the identical manner. (3, p.1]

3 That is, a furdamental goal of MIL-STD-1862A is to define an ISA that

v supports program portability: The ability of a given program to be

moved from machine to machine and function identically -- and-correctly
-= or. all of them. The primary concern of this paper is the degree to
which Nebula meets this objective.

Ir. order to allow vendqrs maximum flexibility in the implementation
techniques and technologies used for Nebula, MIL-STD~1862A specifies
certain details of the ISA as being variable from machine to machire.
To avoid conflict with the portability goal described above, the Nebula
desigrers sought to "reduce the visibility of the hardware to the
software" [1, p.351. That 1is, inter-machine differences would be

unimportant -- they would not affect program portability -- since they

would not be software-visible. An implicit concern of this paper, then, LI,
is the extent to which the hardware variability permitted by MIL- f‘;t;{5

STD-1862A is truly software invisible.

‘ It is worth noting that the importance of software visibility ("These b

I1-3.3
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visibility goals underlie much of the structure of the architecture
adopted for the military computer family" [1, p.35]) can be traced back
to the original Army effort to select an existing architecture for the
MCF:

Aith a well specified architecture, details of data bus
width, technology (core memory versus semiconductor memory,
TTL versus ECL circuits), implementatior speedup techniques
such as cache memories and instruction lookahead buffers,
physical size of computer, etc. need rot be of concerr to
the programmer. A clear (and clean) distinction between
the architecture and implementatiorn detail allows software
to be transported between computers with the same
architecture ever though they may have very differert R
s implemertations. [4, p.u] S

".

T

) : ~.,'<
{ TR

2.2. Excluded Issues

Leaving Nebula aside for the momert, there are certair. universally ‘?'.'.:

accepted cases in which any two computers -- C1 and C2 -- with the same :f*:f-J

ISAs may fail to run identical programs identically:

- Type and Location of I/0 Devices. If, for example, C1 has a tape
drive at device address X and C2 has a card reader there -- or
even no device at all -- a large class of programs will operate
differently on the two machines. 7

- Physical Memory. If C1 arnd C2 have different amounts of memory,
or if the attachment of the memory modules leaves "holes" of

undefined addresses at different points in the address spaces of

. the two machines, then a program with access to real memory may

, not run the same on each.

- Operating System. If Ct and C2 are running different operating
;‘ systems when the compatibility test is made, almost any program

will run differently -— if it runs at all -- on the two machires. :ﬁ
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- Timing. There are a great many ways that multiprogramming load,
I/0-interrupt frequercy, time-of-day-clock setting ard the like
car. influence the operation of a program. (Certair. programs —-
e.g., operatirg systems -- are interntiorally corstructei to
recognize and be influenced by such pheromera.) These effects
may be observed even between multiple executions of a given
program or. a sirgle system; they may be even more prorourced wher.
the executions take place on physically distinct systems.

- CPU ID, Certain machine architectures provide for a software-
accessible identificatiorn code that uniquely desigrates each
individual CPU. A program written to examire this data car be
made to perform differently depending upon the value found.

Inter-machine differences of the types described above are not the
subject of this investigation. In all of the discussions that follow,

we will assume that such differer.ces do rnot exist.

2.3. Categories of Machine Dependencies

Giver two machines conforming to the Nebula ISA Stardard, the
differences between them may be divided irnto two categories:
1. Those documerted as permissible within MIL-STD-1862A.
2. Those resulting from contradictions, ambiguities, or omissiors
in MIL-STD-1862A.
If any other differences exist, then one of the machines must violate
the Standard in some way.
Differences in Category 1 are described in MIL-STD-1862A by several
terms, including "implementation dependent", "undefined", and

"unpredictatable", The word "reserved" is also used to indicate areas
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EI in which the Standard allows inter-machine differences. In certain ' .
- -

. other cases, MIL-STD-1862A simply lists acceptable alternatives, as in: T
" ..a Segment.Specifier exception or a hard memory error trap shall be RO

iritiated, deperding upon the implementation® [3, p.145].

Cases in Category 2 are far more numerous than those in Category 1, '_,,_:!,
arising primarily in the areas of exception and trap handling, the task }?;:2;3
and procedure interfaces, and the memory management system. Nebula :;iz'{f
fails to specify, for example, the rules for virtual-address ;;:5—i=
computation, the values of result operands when certain exceptions are : '“?%
raised, the effect of overlapping operards (except in a few cases), the Ej{:;f]
interaction of memory management traps with operand addressing errors ;‘;5i>

w e
and of instruction-execution exceptions with both of these, ete. Each e

instance of unspecified machine behavior is an implicit implementation

dependency: No matter what a machine does in such a case, it may still

r
Do -
E‘."."'...‘.“

be certified as adhering to the "“Standard" ISA.
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The apparent reason for Nebula's silence in these and other areas is
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the desire to avoid overly constraining the implementors. Whether or

4
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e
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-

rot this is 1legitimate justification for the number of machire
dependencies in MIL-STD-1862A, these machine dependencies need to be
made explicit. That is, all inter-machine differences allowed by MIL~
STD~1862A should be in Category 1; Category 2 should not exist.

The architecture of the IBM System/360 was designed to provide the
sort of implementation independence across a wide range of machines
sought by Nebula. IBM has produced over 40 different models based on
this and the extended System/370 architectures, with a performance ratio
of up to U450:1 between the most and least powerful. In addition, other
vendors have successfully designed and manufactured mainframes that are

plug-compatible with these IBM systems. It is therefore worth noting
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Nebula and Portability Concepts

the following comments contaired in a recent article by one of the
System/360 designers:

In order to ensure compatible implementations, the
architecture has to be complete in that it must cover all
furctions of the machire that are observable by the
program, ircluding all the unlikely concurrent occurrernces
of different unusual exceptions. It either must specify
the action the machine performs or state that the actior is
unpredictable...

The System/360 architecture did rot provide adequate
precision and detail in some areas. Because there was no
specification of the priority in which concurrently
existirg program exceptions are recognized, programmirg of
virtual machines was made difficult. Because the sequence
ard concurrency for storage accesses were not specified,
processors could rot communicate reliably using shared main
storage. And because not enough details in machine-check
hardling were specified, the possibility of model-

independent recovery after an equipment failure was
reduced. [5, p.384]

Not all instances of ambiguity or self-contradiction in MIL-STD-1862A
have a direct bearing upon software portability. It is important to
note that these exist, however, since they contribute to the overall
level of imprecision of the document. Consider Section 5, "Operand

Addressing Modes", in which Nebula's 12 operand specifiers are defined

and described. The operand specifiers
contain the information to determine the location and the
size of the operands to be accessed... The 1location
(address) of all operands must be computable in the absence
of any context information provided by the opcode. This
permits operands to be "pre-evaluated" in the absence of
such information... [3, p.7]
While this 1is certainly a valuable property for an ISA to have (see
[61), there are at least 32 Nebula instructions with operand formats
that are "special cases": not represented by an operand specifier. No
operand pre-evaluation is possible without at least enough context

information to know that the opcode is not one of these 32.

Furthermore, for 3 Nebula instructions, determinirg the format of

Ll Sl ol S i it ol 2™ S S
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operands after the first ore requires examining a separate value in

memory, the address of which is specified by the first operand.

2.4, Detecting Machine Dependencies in Nebula Programs

As already mentioned, it is quite possible -- in fact, trivially easy
~- to write Nebula programs that fail to operate identically or two
different machines conforming to MIL-STD-1862A. On the other hand, it
is also possible to write a large number of programs that may be moved
from machine to machine without detectable change. The important issue
here is how to tell which of these categories a particular Nebula
program belongs to.

For almost all user programs, the execution envirorment 1is
established only partially by the machine architecture; a significant
comporent is provided by the operating system, Giver: that it is
possible to write non-portable Nebula programs, it is natural to ask
whether a Nebula operating system could be built to limit user programs
to only the machine-independent features of Nebula., If so, the problems
caused. by implementatiorn dependencies in MIL-STD-1862A might be
minimized, since these would show up as "bugs™ during software testing.

The Nebula designers clearly had such a software-enharced execution
environment in mind, as indicated by the following statements:

This restriction [on the effects of Nebula actions
characterized as "unpredictable"] may be breached by a
supervisor that gives a user_ access rights to critical
memory or functions. For this reason, access to the CPU
registers in the I/0 space should be controlled by means of
the memory management system. (3, p.3]

The memory management system provides a mechanism for

protecting against such 1invalid software actions [as
reading or writing parts of the context stackl. [3, p.25]

II-’308
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In time critical applications that are deeply nested, an

exception handler should be inserted every few levels to

insure proper response to interrupts. [3, p.36]
Although ar operating system might well be able to deal with these
specific situations == i.e., derying the user access to the context
stacks ard I/0 space, and ensuring availability of an irterrupt handler
-- the vast majority of machine dependencies cannot be masked from user
programs by the operating system. (See especially Section 3.1, "Some
Fundamental Questions", below.) Moreover, even 1if such an operating
system could be constructed, it would not itself be implemer.tatiorn
indeperdent: Each Nebula implementation would require its own version
of ar. operating system designed to mask its implementation deperdencies
-— an example of the sort of duplicate effort which should be eliminated
by a standard ISA. The cost of such an operating system -- both initial
development and subsequent maintenance —- should properly be included in
the life-cycle cost of the hardware.

Ar. operating system does not represent the only technique available
for hiding machine dependencies. An assembler, for example, might be
designed to prohibit -- or at least flag -- instructions whose execution
could vary among Nebula implementations. Compilers might be constrained
to generate only code sequences whose behavior was consistent across the
entire range of Nebula machines. Again, however, the imprecision of
MIL-STD-1362A makes the possibility of constructing such assemblers and
compilers doubtful. And it would certanly be impossible to verify that
a compiler or assembler did, in fact, make Nebula's machine dependencies
software 1invisible. Similarly, there can be no set of programmer
guidelines whose observance would guarantee software portability across

Nebula machines.

B,
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if 2.5. The Question of Errors

;. Many of the inter-machine dependencies cited below have to do with
ﬁ programmer errors, ard it might be said that programmers should simply

avoid making mistakes whose consequences are machine-dependent (or
accept machine dependencies as one of the consequences of ar error).
Such a response is unacceptable, however, for the following reasons:

However hard a programmer tries, errors are inevitable. If a

“Stardard ISA" allows non-standard error responses, the

W_T"r‘ﬁf_rvf -

e : Ty

. RN h
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programmer must be familiar with each machine's particular
idiosyncrasies before fully understanding how to debug his
programs. With debugging representing a significant part of the

cost of software developmert, a Standard ISA carrot afford to

DR 2et BUCa a0, o8 O
P A P
T el

leave error responses to each vendor's taste.

- It is one thing for machines to provide different forms of
notification when faced with a particular error case; with

sufficient study or perseverence, the programmer will eventually

uncover the source of the failure and correct it. But what if
the mistake is such that one "Standard" machire recoghizes it and
one does not? And what if development is carried out on the more
tolerant machine, while the target computer, the one 1in the
aircraft, say, is the one that traps on the error? Imagine, for
example, that the programmer develops a subroutine on a Nebula
which == in full conformance with MIL-STD-1862A -- is generously
silent about the insertion of non-0 bits in some or all of the
architecture's "reserved" bit fields. It is unlikely that such a

bug would be uncovered before the software is installed (and

I1-3.10
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fails) in the "Standard" embedded system in the field.
In light of these considerations, the following passage from the ]
definition of "Unpredictable" in MIL-STD-1862A should be roted: ::TQ: h

Ar urpredictable action may produce ary char.ge irn the state
of the machine that is consistent with the rights of the

program that caused it. For example, an urpredictable
operation performed by a user task may destroy any of the cem R
locations it can access normally, but shall not destroy any g;uﬁﬂig
state protected by the protection mechanisms... It should :;$}§;?
be roted that while the programmer cannot rely or ary Sl
properties of an unpredictable action, it 1is considered ;iafxs-
desirable to make such actions as innocuous a practical, )
(3, p.3]
]
The firal serterce is the opposite of what is required for portability: ﬁ'
The more innocuous an ‘"unpredictable" action is on a given Nebula N
.-
computer, the more likely that such an action will be incorporated, |

ur.detected, within a Nebula program.

For the purposes of software portability, HWebula should be desigred

so that
1. A particular operation will raise an error indicatior. in all
machines or none, and

2. The same error indication will be raised in all machines.

2.6, Two Examples

As one of the industry's most widely copied architectures, it is not
surprising that the IBM System/360 design has generated a number of
examples relevant to the discussiorn of software portability. In both of
the cases described below, "plug-compatible™ machines turned out not to
be.

1. The BXH instruction ("Branch on Index High") is usually used on

184 System/360 and System/370 machines to control 1loops. It
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includes three register operands: a base, an increment, and a
comparand., The base is increased by the increment, and a branch
is taken depernding upon the relation of the sum to the
comparand. If the base ard comparand registers coincide, the

system architecture descriptions [7, 9] state that "the original

contents are used as the comparand". Thus, by specifying the Eii Q{i
same register as base, increment, and comparand, it is possible ;?riig
to use a single instruction to double a register and br.ach if i;:é{;
its original conterts were positive. At least one model, T'!?
however, of an IBM-plug-compatible series of machires X

manufactured by ICL-Dataskil (London) 1in the late 1960's failed
in this case to compare the updated register with its original
contents. System/360-targetted software depending on this
feature -- and there was some -- did not operate properly on
these machines.

2. The TRT ("Translate and Test") instruction in IBM's architecture
is similar to Nebula's SCANB: Each byte in a source string is
used as an index into a table (a bit table in Nebula, a byte
table in System/360-370), and the table value determines whether
the next source byte is to be processed. The TRT instructiorn

includes a 1length specification for the source strirg, which

gives an upper bound on the number of bytes to be processed.
(Of course, the actual number of bytes processed depends upon
the contents of the string and table.) It is common programming

practice to append a "sentinel byte" -~ one whose table value

I
llri:ffﬂﬁQ;f'

P
l" ’ .
. Aad 44 2

s

will stop the scan if no prior byte does =- to the source

string. The maximal string length (256) may then be used, and

no length calculations are required.
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This technique works, in part, because the IBM System/370
architecture specifies that only those source-string bytes
preceding a "break byte" are actually fetched from memory. No
memory-referer.ce exceptiors, therefore, may be caused by the
portion of the source string beyond the sentinel, A "plug-
compatible™ machine manufactured by Siemens AG (Murich),
however, tested to see that the pages éontaining the ertire
source string, as defined by the length in the TRT irstructior,
were accessible before beginning execution of the instruction.
In the rare cases when a source string was located close to the
end of the virtual address space of a process, an unanticipated
page fault might occur.

These anecdotes help emphasize the need for careful analysis of the
operation of any machine that is supposed to function according to a
particular architectural specification. However, no such analysis is
possible unless the specification itself 1is clear, precise, and
complete,

In addition, the examples exhibit two different levels of

detectability for machine dependencies. Once the case of the BXH

incompatibility became known, assemblers for ICL machires could easily
have beer. modified to detect and flag any instances of the problem
instruction. With the TRT problem, however, there is-no way for a
programmer to automatically be kept from intentionally or inadvertently
writing machine-dependent code. The TRT anomaly, therefore, is far more
dangerous, and would be far more important to correct. It must be noted
that the great majority of inter-machine differences allowed by MIL-

STD-1862A are of the latter variety.

I1-3,13
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2.7. "Controlled Non-Portability"”

Part 3 of this paper details many of the ways that a given program
may function differently on two different Nebula computers. Alor.g this
veir,, it will be shown that MIL-STD-1862A explicitly and impliecitly
allows implementors too much flexibility for the software portability
that was one of its primary goals.

Although the purpose of this study was to identify all portability-
related Vebula problems, it 1is not the case that an acceptable I5A
Standard must allow absolutely no inter-machine differernces. A designer
of the IBM System/360 architecture has observed: - .

Identical action 1in all machines 1is less likely to cause 0
problems with compatibility and has a certain aesthetic RS
appeal. Indiscrimirately specifying predictable operation, . .
however, may present problems when the predictable
operation is of insignificant value to the user and some
later machine has difficulty complying with the required
predictability. Whereas specifying initially that an
operation is unpredictable might have been quite
acceptable, relaxing the architecture definition to permit
unpredictability has certain risks, because some programs
may have come to deperd orn the initial, precise definition.
Thus the architect has to make a deliberate decision about
the extent of predictability. [5, p.384]

The key phrase here is "deliberate decision", 1leading to what might be
called "controlled non-portability",
In order for deliberate decisions to be made about potential

implementation dependencies, it is first necessary to have a very

precise definition of the ISA which is not implementation dependent.

Py There must be no ambiguities in such a definition, no obscure cases
whose results are left unspecified. Only then can a careful, rational, R
deliberate decision be made regarding any proposals to relax a L_QI“L

o particular requirement so as to allow inter-machine variation. N
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Nebula and Portability Concepts

Useful consideration of a proposal to allow a machire deperdercy
requires an analysis of its costs and benefits. How likely is it that a
programmer will stumble into the resulting portability problem? Is
there any way of automatically detectirng the problem at compilatior or
assembly time? Can ar. cperating system rule out the problem during
execution? What specific payoff -- e.g., cheaper (how much cheaper?) or
faster (how much faster?) hardware -- will actually result?

Starting from a suitably complete ISA Standard, the Nebula Review
Board (or some technical group appointed by the Board) might perform
such an analysis for any vendor's proposal to relax the Standard. In
this way, only those implementation dependencies with sufficiently low
cost/benefit ratiqs would ever exist, and those that did exist could be
carefully documented and perhaps even monitored by operating systems,
compilers, and assemblers.

The idea of strictly controlling architectures and implementations so
as to limit software portability problems is not a radical or new one;
its use 1in commercial architectures provides reason to expect a high
payoff. Again considering the IBM System/360:

4 set of procedures have been established for the

development of an architecture, starting with the
conception of the idea and ending with the formal adoptior
of a definition. These procedures provide for the

assessment of the cost and value of a function and for the
approval of the architecture by machine and software
implementers. Rules have been established about the extent
of architectural compatibility, and provision is made for
deviating from the common definition.

Although the implementation of a line of compatible
computers did not take an undue amount of effort, the
design and control of architecture proved to require more
attention to detail than originally anticipated.
Furthermore, experience with System/360 and its subsequent
extensions has shown that the management of architecture
must be an ongoing operation to ensure that the evolution
of the architecture structure is governed by a consistent
set of principles and a design philosophy. [5, p.385-386]

II-3.15
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Similar

safeguards have been taken for the architecture of the

family of computers:

The goal of achieving software compatibility in a family of
machines requires a certain amount of discipline irn the
design process that shapes the underlyirg architecture...
Because software compatibility over a wide range of
implementations was a major design goal for Digital
Equipment Corporation's  VAX series of computers,
architecture management was put in place during the early
stages of design... The emphasis is clearly on maintaining
architectural stability by eliminating gratuitous
differences... Future enhancements will be incorporated
into the architecture in a carefully controlled marnner...
The architecture management function 1is delegated to 2
cer.tralized organization that is not biased by the
parochial needs of specific hardware or software
development projects. Architecture management activities
center around both the active maintenance of the
architecture control document and a well-defined process
for the consideration of changes to its content... The
architecture document is intended to be complete and self-
sufficient. Whenever ambiguities, contradictions, or
missing lirks are found in the specification, the documenrt
is updated. [8, p.87-90]

CRERCIREI R i A o e S S S i P i A A

Concepts

VAX

The relevance of DEC's and IBiM's experiences in this area was evident

to those who conducted the 1976-1978 evaluation of commercial ISA's as

candidates for the Army's MCF:

In summary, then, a standard military ISA should be developed,

revised,

By careful family planning, IBM has attempted to insure the
transportability of user programs between machine models.
While not 100% successful in this goal, 1IBM has over 15
years of experience and has come closer to the
transportability goal thar. any other marufacturer.

DEC has built a family of PDP=11's, but there are now
incompatibilities in the instruction sets. Certain
instructions execute differently on different machines. If
there i3 no canonical PDP-11, then all the software may not
be transportable throughout the MCF. Family consistency
requires careful planning. (IBM has a full-time staff of
12 professionals whose sole Jjob is to insure family
consistency). [13, p.10=-11]

defined,

and monitored at least as carefully and precisely as the best

commercial techniques allow.

I1-3.16
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PART 3 = PORTABILITY PROBLEMS IN NEBULA

This section documents some of the most importarnt, most obvious, ard
most interesting ways in which a program may fail to exccute idertically
on various Nebula machines. Not all possibilities have been covered.
In particular, the entire Nebula I/0 specification is left to another
paper. Even ignorirg I/0, however, the scope of implemertatior
dependencies within Nebula is far too complex to itemize completely.

Ir. many cases, the portability problem is posed in the form of a
questior.: Anat will a Nebula machine do in the followirg circumstarce?
These are generally areas where MIL~-STD-1862A fails to indicate how a
calculation is to be performed, whether a particular set of events is
legal, what sort of exception might be raised, etec. Each implemertor
Wwill encounter these questiors (ard many others) 1in the process of
desigring and building a Nebula machine; with no guidance from the
"Standard", it 1is certain that different vendors will arrive at

different answers.

3.1. Some Fundamental Questions

_E: Because MIL-STD-1862A nowhere defirnes the "basic machine cycle" of

-
*’ the Nebula architecture, nor specifies how operand evaluation and

h instruction execution relate to each other, certain basic issues are ]
b -
CT left ambiguous. Some of these will come up again in later sections, but \‘-751
& o
”. it is useful to summarize them here. R
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Nebula ard Portability Problems

3.1.1. Calculation of Virtual Addresses

MIL-STD-1862A defires the Architectural Virtual Address Space to be

"the number of distinct byte virtual addresses that can be generated by
the addressirg modes of the architecture" [3, p.43], and specifies its
size as 2%#32, That is, all Nebula virtual addresses are represertable
as 32-bit quantities. There is rno mention in MIL-STD-1862A, nowever, of
what happens when an address calculation yields a value outside this
rarge.

Address calculatiors occur ir (at least) the followirg contexts:

- Byte- and word-indexed operand addressing modes.

- Scaled- and unscaled-indexed operand addressing modes.

- Instructions that adjust the stack pointer, including PUSH, POP,
]3R, ard J3R.

- 4ost of the "Control Instructions" [3, Sectior 221, which add 3-
or 16-bit inline literals to the Program Counter.

- The MOVTR and SCANB instructions, which use 8-bit quantities to
index into a table ir memory.

- All of the "Bit Field Instructions" [3, Section 27], which modify
a storage address ("Base") by "Pos"™, an arbitrary positive or
regative bit court.

- All instances of vectored operations, where the memory location
referenced is generally some number of words beyond (or, in
certair cases, one word before) a base address. These irnclude
the instructions REPENT, MAP, SETSEG, and SVC, along with all
traps and interrupts.

There are several reasonable ways that a vendor might implement

virtual-address calculations:

I1I-3.19
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Nebula and Portability Problems

~ Perform all virtual-address arithmetic modulo 2%##32; . that is,
keep only the last 32 bits of all calculations.
~ Recognize an error whenever a virtual address exceeds 2%#32-1 or
is negative,
~ Treat all virtual addresses that are 2%%32 or higher as 2##32-1
and/or all virtual addresses that are negative as Q.
The orly reference to this problem in MIL-STD-1862A involves the
multiplication necessary to do the scaling for the scaled-index operand
addressing mode, In this case, "if the index overflows during scalirg,
the low order 32 bits are added to the base to form the operand address"
{3, p.171. Rather than helping, however, this isolated refererce
presents a dilemma: If modulo-2%#32 arithmetic is used for index
scaling, what different rule (or rules) are in effect for other address
calculations? If modulo-2##32 arithmetic is the normal mode (as one
might suppose), Wwhy make a special statement for index scaling?
The Stand;rd should state clearly how virtual address calculation is

to be performed.

3.1.2. Operand Evaluation and References

MIL-STD-1862A states: "Addressirg modes are also required to be free
of side effects. This eliminates any order dependencies in operand
evaluation" [3, p.71. (The "also"™ refers to Nebula's provisions to
allow "operand pre-evaluation", which have been dealt with previously in
this paper.) It is clear, however, that operand evaluation may have
some very significant side effects: exceptions and traps. When
evaluation of ore or more operands of an instruction causes an exception

or trap, the order of evaluation is visible to the software.

11-3,20
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For portability, it is essential that memory-management traps occur

predictably from machine to machine. That is, a program that runs
correctly or. ore version of Nebula should not be able to cause a memory-
mar.agemer.t trap on a different "Standard" machine. Note that a program 8 ~‘3}
may be "correct" even if it involves an exception. Ada, for example,
o considers exceptions an integral part of its language specification, and

several features of Nebula's exception-handling mechanism have Dbeer

( irfluenced by the Ada requirements. In general, exceptions are :'v'ii

corditions that may legitimately be handled by an applicatior. program .

without operating-system intervention; traps, on the other hand, must

always involve the operating system. e
MIL-STD-1862A violates the requirement for predictability of memory- '._.{ixq

managemert traps in at least the following ways: :;;;1,;

- Since order of operand evaluation is unspecified, an exception .
raised by one operand might mask a memory-management trap in
another.

- For the CMPBK, MOVBK, MOVM, and MOVIR instructiors, it is not
specified whether a memory reference occurs (or, in fact, whether
the remaining operand specifiers are evaluated at all) in cases
when "Cnt" is O. The same applies to the SCANB instruction when
"Sler" is 0, and to the SBF, LBFS, and LBF instructions when

"Size" is O.

= - For the MOVBK instruction: "If Src=Dest, the implementation is

not required to check or perform memory accesses" [3, p.131]. ~32§g
- For the CMPBK instruction: "If the two blocks are not equal, the AT
implementation is not required to check or perform memory .
accesses beyond the first nonequal items™ [3, p.130]. f{}}"

¢ - In the case of the MOVIR and SCANB instructions, must. the .'

11-3.21 IR
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implementatior determine the accessibility of all the bytes of
the table (256 for "Table"™ in MOVTR, 32 for "Btable" in SCANB),
or only the portion indexed by the bytes in "Sre"?

- For the SCANB instruction, must the implementation test the

accessibility of all "Cnt" bytes of "Src¢", or only those bytes

actually fetched?
-~ The CMPS instruction compares the values of two of its operands, ;{;::\9

and assigns to one or the other depending on the result. Must :ﬁ;f}

4
both operands be write-able, or just the one actually selected '3:-~,!§
3 for modification?

- May an implementation, as part of pipelining or some other

speedup technique, suppress evaluation of an operand specifier if Q, .
;Q the operand value is not needed? For example, if one operand of :,{4':

the MUL instruction can be quickly determined to be O, is it R

'4.{.;.';'."(; i

et P
PRSI TAY

legitimate to set the result to O immediately? If the divisor in

C -

a DIV instruction is O, may an implementation raise the

Illegal.Divisor exception without evaluating the dividend?

PR

For full transportability, exceptions as well as memory-management
traps must be predictable, The complexity of the Nebula architecture
makes it extremely difficult to specify completely the interaction of
all exceptions and traps, short of a full description of the logic of
operand evaluation and reference. The reluctance on the part of
Nebula's designers to include such a description is understandable.

Although it deals with a somewhat simpler architecture than Nebula,
the description of "Serialization" for the IBM System/370 [9] suggests
an approach:

All interruptions [which include what would be called

"exceptions" and "traps" in Nebulal, and the execution of
certain instructions, cause serialization of CPU operation.

I1-3.22
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Execution of a . serialization function consists in

completing all conceptually prior storage accesses by this

CPU, as observed by channels and other CPUs, before the

conceptually following storage accesses occur. {9, p.28)
One of the merits of such an approach is that there need be no
serialization-caused delay in machine execution until an exception or
trap occurs. On the other hand, depending on the implementation, a
great deal of circuitry might be needed to make this serialization
possible, perhaps leading to an unacceptably expensive machine, An
analysis of the costs and benefits of a serialize-on-exception/trap
capability should be part of the evaluation of proposed Nebula
implementations. However, no such analysis can take place for Nebula
computers, since MIL-STD-1862A 1is not precise enough to determine the
meaning of the phrases "conceptually prior" and "conceptually
following".

Similar topics are considered for DEC's VAX architecture [10], wupon
which Nebula is loosely based, in [12, p.51-52]. It is worth noting the
following description of exceptions on the VAX architecture:

Both hardware- and software-detected exceptions occur
synchronously with the execution of a process, That is,
they occur as the result of the execution of a specific
instruction sequence; if that sequence were repeated, the

same exception would occur again. [11, p.387]

Even this level of repeatability is not assured by MIL-STD-1862A.

3.1.3. Overlapping Operands

MIL-STD-1862A considers overlapping operands for the followirng
instructions:
- EDIV, EXCH, and MAP, Each of these instructions has two output

operands. If these operands overlap, MIL-STD~1862A specifies

II-3023
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~ MOVBK. ", ..0verlapping source and destination fields do not
affect the results" [3, p.131].
~ MOVTR, "If Dest overlaps the translation table, the result is

undefined" (3, p.132].

For all of the other Nebula instructions, how will a "Standard" machine

AT

treat overlapping operands? MIL-STD-1862A appears to leave the matter

operi; does this mean that the answer is implementation dependent? For
program portability, the Stardard should specify that overlapping R
operands may not affect the results of an instruction, except where R

explicitly mentioned.

b SaREACAnL:

3.1.4. The Program Counter RIS

The program counter is one of the most fundamental components of most
computer architectures; its contents and functions are generally defined
very thoroughly and precisely. In MIL-STD-1862A, however, there is no

formal definition of the program counter. Instead, there are isolated

references to its value in certain special cases. There seems to be no
underlying model 1linking these special cases, leading to a confused
picture of what the Nebula program counter is and what it does.

Nebula's departure from conventional practice appears, once again, to
be aimed at providing maximum flexibility for the implementor. To

maintain the software invisibility of the resulting implementation

dependencies, the Nebula architecture provides no direct way, in
general, for the programmer to test or set the value of the program
counter. Nonetheless, the ill-defined nature of Nebula's program

counter leads to the following problem areas:

g I1-3,24
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- Although the Nebula design attempts to make the context area

software-invisible, at best it simply provides the means by which
an operatirg system may choose to make the context area
inaccessible to user programs. With respect to any user programs
not so restricted, and with respect to the operating system
itself, the context area -— and, therefore, the program counter
-~ is, ir. fact, software-visible. (See "The Procedure Irterface"”
below.)
When a supervisor exception harndler 1is invoked, its third
parameter is defined as:
The program counter of the context that invoked the
supervisor exception handler, as a register. This
program counter contains the address of the instruction
to be executed if the supervisor exception handler does
a RET... This parameter may be read or written,
Writing this parameter is equivalent to altering the
caller's program counter by reference. [3, p.38]
This suggests strongly that the Nebula program counter points to
the beginning of an instruction. A similar impression is
conveyed by the symbolic descriptions of many of the Nebula
Control Instructions [3, Section 22]. In the following cases,
however, the program counter is described 1in such a way as to
make this interpretation less certain:

- For the register-indexed operand addressing modes, "if the PC
is used as the Index Register, it points to the displacement
when calculating the memory address" (3, p.121]. This
suggests that the program counter "moves over" the various
parts of the instruction being executed.

- The CASE instruction includes a list of displacements, one of

which is selected and added to the program counter. However,

"after operand evaluation the PC is pointing at
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L L

displacement[0), not the next instruction. Therefore the E: L ;
branch displacements are relative to the address of ﬁf:fﬂ%
displacement[0]" (3, p.1091. S "3!

- Wher a new procedure is entered, "space shall be allocated on the .
context stack for each register starting with 0 (the program :_T;J;
counter)... The contents of these newly created registers are i;iﬁff‘
undefined with the exception of register 1" [3, p.27)]. At what Ei;?:ﬂ

point during procedure entry is the program counter defined? If =
ar. exception or trap occurs during the relatively complex process f;~ 

of calling a procedure, where does the program counter point?

- If an instruction crosses a segment boundary in such a way that a
memory management trap occurs, what is the program counter in the
suspended procedure?

- If the program counter references an improper segment due to a
Control Instruction -- that is, if after being incremented by a
displacement, the program counter points into a segment that may
not contain instructions -- what is the program counter at the
time of the memory management trap?

- The JSR and RSR instructions may lead to traps or exceptions;
what is the state of the program counter in such cases?

- What is the state of the program counter in a procedure suspended
in the middle of an "interruptable" instruction? (See Section
3.2 below.)

Many other questions may be asked whose answers will depend upon how a
particular vendor chooses to implement the Nebula program counter. With

this degree of ambiguity surrounding such a central component of the

architecture, program-counter-related portability problems are likely to

e arise with each new Nebula implementation.

i1-3.26 f{i:i
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3.2.

Interruptable Instructions

The 5 "String Instructions" [3, Section 26] are required by MIL-

STD-1862A to be interruptable. This means:

Each

If an interrupt or trap occurs during the execution of such
an instruction at a point where processing has begun but
not yet completed, the intermediate state of the
instruction 1is preserved (in the context stack, in an
implementation-dependent form). When the interrupt or trap
handler returns and the instruction 1is resumed, the
instruction shall be correctly completed, provided that
certain operands of the instruction have not beer. altered
by mearns other than the interrupted strirg instruction...

If a string instruction is interrupted before completion,
the entire contents of its destination region, as well as
any condition codes set by the instruction, are undefined
unless and until the instruction 1is resumed and completed.
Moreover, if any source or destination region of a strirng
instruction is altered after the instruction processing has
begun but has not yet completed because of an interrupt or
trap, or is altered because of any other memory writes not
performed by the CPU (such as an I/0 transfer) after the
instruction processing has begun but has not yet completed,
then when the instruction is resumed it shall completely
and correctly transfer control to the next instruction, but
the contents of any destination region are undefined, and
any condition codes or ordinary destination operands set by
the instruction are undefined. [3, p.129]

implementation dependency and undefined state in the above

deseription is an opening for non-transportability. There are,

moreover, additional problems here that are much more subtle:

- Among other things, memory-management traps will be used to

indicate the need to read non-resident segments into memory from
disk. However, the passages from YIL-STD-1862A quoted above
state that such 1input produces undefined memory locations
whenever the trap involves a destination region of a string

instruction., This effectively rules out demand-paging systems on

II-3.27

-— —
h—.‘..'—.--—-——‘
NS
.
"h
K e
oL =
P .' - N
- - &
-
. *~
ot
b
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Nebula.

- In the case of either an interrupt or a trap, a task switch may
be necessary (for example, to process an interrupt in the context
of the task that requested the I1/0). iMay the memory map -- or

the map pointer -- be changed while a string instruction is

{'- suspended? Ahat is meant by modifying the source or destination

. regions of a suspended instruction in a suspended task? . ::A:

P v

To avoid the possibility of a nontermirnating succession of

segment faults, an operating system would need to "lock" any
memory~resident segments of a suspended string instruction. The o

MAP instruction can be used to determine the segment in which the

T

<
trapping memory reference resides, since the trap handler 7> di

receives its address as ?1. How can the segments of the other

AT OON ﬂ’.' LW TN
’

operands be determined? The trap handler receives the address of
the opcode of the problem instruction (as ?2), but determining

the memory 1locations of its operands may require access to the

register and parameter descriptors within the context stack, and

these are maintained in an implementation dependent format and

MO

location. Furthermore, any attempt by the trap handler to look

at the operand specifiers of the suspended instruction might }; ,i“

vy T

itself cause a trap for reading a code-only segment (unless the

J! trap handler modified the segment's access bits, the legality of o

which 1s unclear for a segment containing a suspended j‘FQlf?
instruction). Of course, the trap handler could attempt to
'@ construct a MAP instruction containing the operand specifiers of

! the trapping instruction, but this technically constitutes self-

modifying code, which cannot be executed implementation-

independently (see "Cacheing and Pipelining", below).

P
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o - Wheriever an 1/0 intérrupt occurs, an arbitrary area of memory
m within the interrupted task may be undefined, since a strirg
o instruction might have been executing. Each subsequent interrupt
{71_ nas the potential of ircreasirg the amount of memory with such ]
implementation-dependent contents. A complete characterizatior. } jr~f’1
of the system state -- in, for example, a memory dump -- may be ]i'i;

very difficult, if not impossible, to understard.

- The above description of interruptability assumes that the trap ] “f

harndler will return using the RET instructior. What if ERET is .ﬂ

used? Does the instruction remain suspended pending return from ‘

. the Supervisor Exception Handler? Are new implementation ,“;{;

dependencies introduced by this sequence of events?
The above-quoted section was added to the "Date TBD" version of MIL-
STD-1862A to help clarify a number of questions raised during review of

earlier drafts. However, significant problems remain.

3.3. Cacheing and Pipelining

Cacheing and pipeliring are two "implementation speedup" techriques.
In cacheing, certain recently- or frequently-referenced memory locatiorns

are maintained in registers or other fast-access storage, rather thar

main memory; in pipelining, sub=parts of one or more machine
instructions are performed 1in parallel and/or in a time-optimal
sequence, rather than in the order suggested by the architectural
description. In converntional architectures, pipelining and cacheing are
visible to the programmer in only a very few well-defined situations, if

at all, For example:

In VAX family processors, the cache is implemented in such
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Nebula and Portability Problems

a way that its existence is transparent to software (except
for timing and error reporting/control). [12, p.84]

Each CPU may have an associated cache. The effects, except
on performance, of the physical construction and the use of
distinct storage media are not observable by the program.
{9, p.14]

In very simple machines in which operations are not
overlapped, the conceptual and actual order [of storage
references and instruction processing] are essentially the
same. However, in more complex machines, overlapped
operation, buffering of operands and results, and execution
times wich are comparable to propogation delays between
units can cause the actual order to differ considerably
from the conceptual order. In these machines, special
circuitry is employed to detect dependencies between
operations and ensure that the results obtained are those
that would have been obtained if the operations had been
performed in the conceptual order. [9, p.23]

That is, conventional architectures go to some lengths to shield the
programmer from the effects of implementation speedup techniques.
However, regardless of assurances to the contrary (see the above
references to "visibility" in [1]), many aspects of MIL-STD-1862A serve
to place upon the programmer, rather than the hardware, the burden of
avoiding cache- and pipeline~related anomalies. The following is a non-
exhaustive list of such cases:
- In Section 8.1.3, "Cacheing of the Context Stack", MIL-STD-1862A
states:
In many implementations it will be desirable to
maintain such information in fast registers... The
Nebula architecture does not define the properties of
any such cacheing mechanism. The representation of the
context area of the active (Kernel and Task) context
stacks is TMPLEMENTATION DEPENDENT. The value of such
memory locations is undefined. The effect of storing
into such memory locations is unpredictable. [3, p.25;
emphasis in originall
- In Section 15.2, "I/0 Space Assignments", MIL-STD-1862A states:
Accesses to ALL registers in 1/0 space are
restricted... Accesses that do not meet these

restrictions shall produce one of two outcomes; either
the access shall complete as requested or the access
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shall produce a hard memory trap. The choice is
implementation dependent.

The Kernel corntext pointer, the Task context pointer,
the User map pointer, and the Supervisor map pointer
are special registers that determine the control flow
of the computer. As such, reading them through tha I/0
space may yield old or undefined values. Writing these
registers through the I/0 space will produce
implementation dependent results. [3, p.71]
The Nebula restrictions on I/0 space access are apparently due to
implementation considerations. While such restrictions have no
direct effect on portability, allowing an implementation to
arbitrarily decide whether to enforce them 1is not reasonabl=z,
Nebula machines should all either trap on invalid I/0-space
accesses or else perform them properly.
In Section 12.3.1, "Cacheing of Memory Maps", MIL-STD-1862A

states:

In many implémentations, it will be desirable to cache
parts of the memory maps, such as the map size and a

few recently used map entries. The properties of any
such cacheing mechanism are implementation dependent.
{3, p.u7]

Subsequent paragraphs contain requirements that the LTASK and
REPENT instructions "force the cache to be consistent" with the
storage representation of all or part of the map. It is not at
all clear, however, what this "consistency" entails, nor how long
it lasts._

In Section 12.2.5.1, "Self-Modifying Code", MIL-STD-1862A states:

If access protection is disabled, it is possible to
execute instructions that write their operands into the
instruction stream in the immediate vicinity of the
program counter... Since modern implementation
techniques wusually require some type of instruction
pre-fetch, the action of such self-modifying code is
unpredictable. Modifications (or data writes) to the
instruction stream are guaranteed to be interpreted as
stored only if a REPENT or LTASK instruction is
executed before execution of the modified instruction
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stream is begun. [3, p.47]

!
o

While it is true that restrictions on self-modifying code are not

1
o
!

]

uncommon in "modern implementation techniques", the above
specification is unsatisfactory in several ways:

~ First, and most important, the term "immediate vicinity” is

- completely undefined! Self-modifying (whether intentionally
or as the result of an error) programs will Work on certain

H‘ Nebulas without the use of LTASK or REPENT, but will fail on
X

machines with a different "window of unmodifiability".

~ Although self-modification 1is generally considered to be a

poor programming practice, it must be recognized that the
initial loading of a program into memory and any use of code
overlays involve modification of program memory. To what
extent are these operations legal, and what does the :,f- i
programmer need to do to ensure their proper function? ; -
- In the System/370 architecture, consisterncy of the .ﬁ‘;:'.ﬂ

instruction pipeline and memory may be achieved by executing ' 1:>1n

a particular form of no-op instruction. This is a small
(2-byte), quick (no memory references), side-effect-free
instruction that may be executed by any process in any state.
By contrast, the LTASK and REPENT instructions involve
significant CPU processing, require operand evaluation, may
cause exceptions and traps, and need special privileges for
execution. The request for instruction-stream consistency is
very difficult.

~ In Section 12.3.3, "Aliasing of Physical Addresses", MIL-

STD-1862A states:

Using the relocation facility of the memory management
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system, it 1is possible to map two distinet virtual
addresses onto a single physical address. This is
known as aliasing of a physical address. In pipelined
implementations, it may be desirable to wuse virtual
addresses for data access coordination. In this case,
the order of multiple accesses to the same physical
address through different virtual addresses is
unpredictable, The practice of aliasing physical
addresses should be avoided. [3, p.48]

In many architectures, a prohibition against the sort of aliasing
described here might be reasonable. In the case of Nebula,
however, aliasing provides the only convenient way to implement

storage that 1is readonly to a user but read/write to a

supervisor, Some 1less sweeping elimination of aliasing is

required.

3.4, The Procedure Interface

Nebula's procedure interface is one of its most distinctive features. : 4
A stack of ‘"procedure contexts" maintains, i an implementatior- fr R

deperdent manner, the "current state of execution" [3, p.23] of all T

active procedures, including PSW, registers, parameters, exceptiorn i
- 4
handler, etc. By leaving the format of the context area open, the !_ ‘!=
JERNRRS
Nebula desigriers meant to provide "considerable freedom in the structure :" Fn::

of the local store" {1, p.37]. As mentiored earlier, all aspects of

this structure were to be invisible to the software.

Ir. reality, however, the context stacks are not software-invisible.
An operating system may choose to restrict a user program from accessing
this memory, but there is no architectural requirement that it do so.
4IL-3TD-1862A does require that, at the time of call, the context area
for the called procedure -- and perhaps the calling procedure, although

this 1is not clear == occupy context-only storage. For procedure
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.- contexts further down the call chain, in suspended tasks, or in storage L

that has been re-mapped for any of a variety of reasons, however, there -
is no architectural reason for an operating system to restrict user *"f:}
access, And, of course, the operating system itself can clearly choose

to examine or modify context-stack areas. Any such reference -- whether
intentional or the result of a programming error -- may produce
different results on different "Standard" machines, and therefore
entails a portability problenm.

Not only 1is it possible for software to access Nebula's procedure
contexts, but in certain cases such access represents the only (or only
convenient) way of performing a necessary function. Most of these
involve anticipated requirements of operating-system or other
supervisor-level routines. Although it may be possible to meet one or
more of these requirements in a non-implementation-dependent manner, the

burden of proof should reside with those making such a claim. "Proof™",

ir. this case, can only consist of a fully functioral machine-indeperdent
operating system.
The unspecified format of Nebula's context stack presents problems in
at least the following cases:
- The size of a procedure's context area will vary from
implemer.tation to implementation. Size information is needed in

order for the operating system to allocate sufficient space for

interrupt processing, as well as for the supervisor exception
handler, trap handlers, etc. (See below for a list of unresolved ST

issues in the area of context-stack overflow.) Although certain gi,mid

components of the procedure context strongly suggest storage ?{;T;ﬂ
sizes (e.g., the PSW and registers), the space requirements for -fff;j

others are intentionally left open by MIL-STD-1862A. In
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particular:

-~ "The size and format of the parameter descriptors is
implementation dependent®™ [3, p.321].

- "Encodings of the states [of the exception handler for a
procedure] in the context area shall be implementation
dependent" [3, p.35].

- "...The intermediate state of the instruction [suspended due
to ar. interrupt or trap] is preserved (in the context stack,
in an implementation-dependent form)" [3, p.129].

- The current Nebula procedure context is indicated by a pointer
whose exact value is implementation dependent:

The address in the context pointer shall be greater
than or equal to the smallest address occupied by the
current context. When a new context is created, the
context pointer prior to being decremented shall be
greater than the address of any byte of the newly
created context. These restrictions imply that a
context area may be initialized by setting the context
pointer to the greatest word address in the context
area plus 4. {3, p.25]
It is not clear that this provides enough information for an
operating system to initialize context areas in all cases, and
might easily lead to a wide variety of portability problems.

- Many programming languages provide a form of dyramic storage
allocatiorn for which periodic "garbage collection" is, if not
absolutely required, at least desirable. Among the many ways of
performing garbage collection, the most common involve "marking
algorithms", which require that all currently-accessible data
items be flagged. Data items may be accessible through pointers
corntained in registers and parameters of non-current procedures.

A garbage collection routine must therefore have access to such

registers and parameters, which in Nebula may be obtained only in
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an implementation~dependent manner.

- Similarly, a run-time debugging package requires knowledge of
register and parameter values for all procedures in a call chain
in order to provide the programmer with a complete description of

the system state. Again, only a machine-dependent version of

such a package could be built in Nebula.

In addition to these format-related points, the following portability

v v—v-
v (3
. .

problems exist witiu respect to the calling mechanism itself:
: - Except possibly for register 1, register contents upon procedure ) f_%

) entry are undefined. Thus, accessing a register before assigning

T

it a value will produce implementation-dependent results. Since

"use before definition" is one of the most common programming .a
1

I R g
1

errors, this is 1likely to be a major source of portability
problems. An ISA Standard should either specify initial register

contents or else stipulate that an Uninitialized.Value (or some

similar) trap must occur upor. reference to an uninitialized

st .
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o T .
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- It is unclear what happens if there is insufficient storage in

the current context-only segment a£ the time of procedure
invocation. Will a contiguous context-only segment be used if it
exists? If so, does the new context cross a segment boundary?

What sort of re-mapping, if any, may a trap handler perform in

such a case to expand the available context-only memory? What if
there is insufficient context-stack space for the trap handler to

be called? Similarly, what happens when insufficient context-

stack space exists for processing an I/0 interrupt, hard or soft
: memory error, exception, etc.?
C: One additional confusion about Nebula's context areas is worth
e
L 11-3.36
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noting. On page 24, MIL-STD-1862A describes in detail the order of
storage within a procedure context of the PSW, registers (even
indicating the sequence in which these appear), parameter descriptors,
and exception-handler state. Since at least one item is omitted from
the list (the "intermediate state™ of a string instruction suspended by
a trap or interrupt), since the formats and lengths of the other items
are machine dependent, since the item pointed to by the context pointer
is also machine dependent, and since context-stack storage is not
supposed to be software-visible in the first place, this structural
information is of no use to the programmer. Its only apparent effect is
to place constraints on the implementors, which is contrary to the

general flavor of the "Standard®.

3.5. Additional Problem Areas

Ir. the previous sections of this report, the deficiencies ir a few
areas of the Nebula architecture were described in detail. The
following list presents in more general terms some of the portability
problems in the remaining areas of Nebula:

- Sensitive Fields. Nebula defines a great number of fields whose
cor.tents are implementation deperdent, reserved, or otherwise
restricted. Software modification of many of these fields
produces "unpredictable" results. Every field of this type
provides yet another opportunity for a program to act differently
on different Nebula implementations.

- Maximum Number and Minimum Sizes of Segments. Nebula allows each
implementation to decide on the maximum number of memory-

management segments permitted (at least 16) and the minimum

I1-3.37
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acceptable size of each (at most 256 bytes). Since there appears

no way for software to determine these maximum and wminimum
values, a transportable Nebula operating system that takes full
advantage of hardware support for memory management would be
impossible to construct.
Data on Segment Boundaries. MIL-STD-1862A states
When a 2, 4, or 8 byte primitive data object... 1is
being accessed, segment association, relocation and

protection checks function as if the object were
referenced one byte at a time. (3, p.i5]

For all of the cases in which memory is accessed other than for a t-;ﬂ.fh
primitive data object, how are segment association, relocation, :55;'53
and protection checks performed? These cases include at least F;;;l?
the following: Instructions (including up to 257 operands on the Lf‘f‘!%

CALL instruction and up to 65,539 on the CASE instruetion),
Procedure Descriptors, and SVC and OPEX Vector Tables.
Undefined Operand Sizes. MIL-STD-1862A specifies that:

If...an instruction encounters an operand whose size is
not defined in the instruction description, the
~instruction shall abort and the PC shall be reset to
the beginning of the instruction. An OPEX vectored
call shall be initiated wusing the instruction's opcode
as the index and its operands as parameters. The
number of parameters for this OPEX procedure will be
the same as the number of operands defined for the
opcode in its instruction deseription. [3, p.171]

There is at least one case still left open by.this provision: If
the index specifier in scaled- or unscaled-index addressing mode
is a 64-bit integer, the resulting address is "undefined". In
other cases, the OPEX convention raises troublesome questions:
For several Nebula instructionms, the nﬁmber of operands is
determined by the programmer. How many are passed to the OPEX

call? For CASE, LOOP, IBLEQ, and the various other instructions

I1-3.38
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whose operands include items not represented by one of Nebula's
operand specifiers, how are the parameters to the OPEX call

specified at all?

= Debugging Facilities. Nebula allows the programmer to "trace"

execution, either on a statement-by-statement or procedure-by-
procedure basis, by setting bits 13:14 of the PSW. Proper
setting of these bits will cause a "break" to occur Mafter the
execution of the specified instruction [all instructions or just
procedure calls and returns] and before a check for pending
interrupts" (3, p.39]. When a "break" occurs, control is
transfered to the Supervisor Exception Handler. In concept, this
is one of Nebula's nicer features. However, since no
implementation details are specified, questions arise which, when
answered independently by various Nebula implementors, will lead
to transportability problems: What if an -exception or trap
occurs while processing an instruction that would rormally cause
a "break"? Will the break occur before or after processing the
trap/exception, or not at all? Will this depend on the type of

trap/exception?

= Arithmetic Status Bits. How are the C, Z, N, and T bits affected

by traps and exceptior.s? Ir. the case of the EDIV instruction,
"if storage of either R1 or R2 is blocked by the memory
managemer.t system, the .storage is ahorted ard the operands are
unaffected" [3, p.81]. Are the Z, N, and T bits unaffected as

well? Does the same answer apply to all other instructions?

- Sizes of Certain Parameters. It is essential to the Nebula

architecture that each parameter be associated with a size (1, 2,

4, or 8 bytes). MIL-STD-1862A therefore carefully specifies the
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size of each of the "implicit parameters®™ to the Supervisor

Exception Handler, etc. Apparently by oversight, however, sizes
for the following are not given: the "priority level" passed as
the single parameter to the software-interrupt-request procedure
(3, p.40l; parameters 3 and 4 of the memory-management-trap
procedure [3, p.48].

- Illegal.Divisor. For no apparent reason, MIL-STD-1862A 1is

inconsistent in 1its treatment of the Illegal.Divisor exception,

raising serious questions about how exceptions affect arithmetic
instructions in general. For the DIV, REM, EDIV, and DIVU
instructions, MIL-35TD-1862A states: "When this exception occurs
the operands are unaffected" [3, p.78, 80, 81, 88]. For the MOD éw;__!a

and DIVFIX instructions, however, there is no such comment, and

*
PR

the description of the LOOP instruction actually implies that .ﬂ ,gf

PR

some operands may be modified even if an Illegal.Divisor S

exception occurs. In general, when does an exception prevent

PRSI 'A.'

operand modification and when does it not? In what sense can two }:.
versions of Nebula be considered the same machine if they act

differently in such cases?

eed® s
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PART 4 - CONCLUSIONS AND RECOMMENDATIONS

As a document, MIL-STD-1862A is not sufficiently clear, precise,
or complete to be used as the definition of an ISA Standard. It
allows such a wide range of software-visible variations that
transportable programs will be difficult to write and impossible to
certify as transportable. Detecting whether a given program
irtentionally or inadvertently utilizes any of Nebula's
implementation dependencies is, in general, impossible.

The feasibility of a software-augmented execution environment
that simulates an implementation-independent "virtual machine"
remains to be demonstrated. It 1is questionable whether such an
environment can be constructed, however, and almost certain that it
would have to be re-constructed for each Nebula implementation.

MIL-STD-1862A could be enhanced by adherence to the following
guidelires:

1) The operation of the machine in all cases must be unambiguously
specified by the Standard, even if implementation dependent.
That is, the Standard must be complete.

2) All implemertation dependencies should be made explicit in the
Standard and the range of variability méde clear,

3) A design philosophy should be adopted in which implementation
deper.dency 1is the exception, rather thar the rule. This
requires, at least initially, a completely specified Standard
Wwith no implementation dependencies.

4) A consistent set of principles must be developed and applied in
determining what implementation dependencies will be allowed.

These principles should involve primarily considerations of

II-3.41
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costs and benefits, including hardware and software costs for
the full life cycle of a standard machine. Major elements of
the cost/benefits analysis include:

- How much faster and/or cheaper will a machine be if it can
take advantage of the flexibility provided by the
implementation dependency?

- To the extent that the implementation dependency is
software-visible, how difficult will it be to detect a given
program's inadvertent or intentional use of it? Can a
compiler or operating system detect such use? How expensive
will it be to put such detection in the compiler or
operating system? Will such an addition make the compiler
or operating system itself non-transportable?

5) Proposed implementation dependencies should be presented ¢to a
cor.trol board for evaluation according to the principles
mentiorned ir (4), Approved implemertatior. dependencies must be
carefully and completely documented, including a description of
the techniques available for detecting improper use.

The dilemma facing Nebula is a classic one: How to take advantage of
advances in a rapidly advancing field, while ailowing "old" programs to
cor.tirue working across a wide range of systems. Although well-
irtentioned, the current Nebula approach to this dilemma has resulted in
ar. ur.der-specified Standard ir. which the burden of writing transportable
software rests with the programmer. Both DEC and IBM have proven that

there are better approaches.
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The Input/Output subsystem ¢f a cocmputer instructicn set architecture
must be ccnsidered at 1least as impertant as the design of central preo-
ces3or instructiﬁns. The 1/0 interface directly affects such architec-
tural gcals such as program portability, security, program verificaticn,
perfcrmance (beth for multiprogramming and real-time applicaticns), and
fault tclerance. The purpose of this paper is tc examine the Nebula 1/0
interface as specified by MIL-STD-1862A, with medifications threough
31AUG81. The first secticon presents a summary of the 1/0 interface with
emphasis on these areas o¢f concern te¢ a pregrammer whe must understand
the relationships between the Central Prccesscr, 1/0 Processors, and
Memcry Management Subsystem. The seccnd section details areas of the
1/0 interface specification that are ambiquous c¢r problematic in terms
of meeting the architectural gcals of Nebula menticned abocve. The third

secticn discusses scme pessible apprecaches which cculd be used by desig-
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ners of cperating superviscrs for Nebula computers which cculd cvercome
scme of the problems. The fourth section propcses some changes to
MIL-STD-1862A which, if implemented, would eliminate certain prcoblem
areas. The fifth secticn considers the relative merits ¢f changing the

Nebula standard against the pctential impact of the prceblem addressed.

THE NEBULA I/O INTERFACE
Intrcduction
The major part o¢f MIL-STD-1862A dealing with the 1/0 subsystem is con-
cerned with interfaces between the central processcr (CPU) and special
purpcse processors known as 1/0 Controllers (I0Cs). The standard 10C
has a limited 1instructicn set but can execute independently <f the CPU
and prcevide a relatively simple interface tc a variety of devices.

For the mest part, the I0C is assumed t¢ be connected to devices by
wne of three different interfaces: Parallel Pcint-tce-Peint (PPP) preo-
vides a high speed 15 bit ccnnecticn to a single device; Serial Peint-
te-Point (3PP) provides a slow speed interface tc a device using prote-
ccels like RS-232; and MIL-STD-1553B (1553B) prevides a 156 bit  bus
cennecticn between a variety of devices and is widely wused in military
applicaticns, An attempt has been made in Nebula tc previde a single
architecture containing encugh flexibility t¢ utilize the capabilities

¢f all three types ¢f interfaces.

Physical Memcry Address Assignments
1/0 Space: The first megabyte o¢f the physical address space 1is set

aside fcr use as 1/0 and CPU control registers. The upper 2K bytes of
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Analysis of Nebula Architectural Support for 1/0

1/0 Space is reserved for such prccessor control registers as: PSW, ASR,

map pcinters, cocntext pcinters, timers, and OPEX and SVC vector pointers

and limits. The remainder ¢f the 1/0 Space is used toc access cor contrcl
either devices o¢r 10Cs. Each I0C is allocated a 512 byte blcck of
registers in 1/0 Space aligned ¢n an address that is a multiple «of

512.(1)

Because the implementaticn ¢f this poerticn ¢f the address space is
likely tc¢ be much different than prcgram memcry, in I/0 Space the CPU is
nct alloewed to generate references which cross register or data item
becundaries. Alsc, nc 10C program, message, or data access is allcwed to
1/0 Space (access causes a hard memcry errcr or a Memcry.error interrupt
frem the 102C).

The lower 256 bytes of the 10C régister bleck is for secure data
which untrusted prcgrams shceuld nct bhe allowed te access. Currently
defined registers in this blcck are:

1. Channel Confiquraticn Register: contains interrupt pricrity for
attached toc the I0C, The register may alsc contain channel depen-
dent information like baud rate, Remcte Terminal (RT) address (for
15538 serial bus interface), or device interrupt wpricrities (for
parallel pcint-te-point interface).

2. Prcgram Segment Specifier: sixteen bytes ccntaining sufficient
implementaticn dependent infocrmatiocn such that the I0C may verify

that a channel prcgram instructicn or 1literal access is within the

(1) The bleck size of 512 bytes was chosen because some implementations
may use 256 for the minimum memcry segment size. 1t was desired to
have twe poerticns of the bleck be independently mapable s¢  a user
precess weuld not have tc be given access to the secure pertion of
the register block (see belew) but would still be able to perform
direct 1/0 cperatiocns to a device.
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original segment specified with a SETSEG instructicn and to perform
the necessary relccation o¢f virtual addresses asscciated with the

channel program.
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3. Message Segment Specifier: similar tc the Program Segment Specifier
except that it is used to validate/relccate contents of and cffsets
from the Message Pcinter Register (below).

4. Data Segment Specifier: similar to the Prcgram Segment Specifier
except that it 1is used tc¢ validate/relcocate virtual addresses for
10C instructions that transfer data (except for instructions that

specifically use the message segment for data transfer).

The upper half cf the IOC register blcck contains:
1. “hannel Status: sixteen bits with bits 2 thrcugh 15 centaining
channel dependent informaticn. Bits 0 and 1 control starting and

stopping the 10C and are discussed later.

2. Channel Prcgram Status: sixteen bits used tc¢ indicate the reascn
for early termination ¢f a data transfer (Overrun, Data Check,
etc.).

3. Channel Prcgram Counter: contains the 32 bit virtual address <f the
next instructicn te be executed.

4, Message Pointer: contains the 32 bit virtual address of the current
message. In simple cases, the message contains the wvirtual
addresses of data buffers tc be used for dAata transfer c¢peraticns,

5. Status Word and Vector Word: sixteen bits of flags defined for use
by the 1553B interface.

Other assigned Physical Addresses: Certain physical addresses of inter-

est are lccated in the first 256 bytes above the 1/0 Space (starting at
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Analysis of Nebula Architectural Support for 1/0

hex address 00100000). The reserved addresses in this secticn ¢f memory
should be accessed relatively infrequently sc that 1little perfocrmance
impact results from having the values in memcry rather than in registers
in 1/0 Space.

Reset/1PL entry and save area pointers: The entry address o¢f the
prccedure to be called when the RESET switch is activated is lcoccated at
hex lccaticn 00100040, Location 00100044 poeints to a doublewerd which
centains pointers to the supervisor map and kernel context area to be
used when the procedure is invoked. The IPL process is similar tc the
RESET sequence except that the prccedure entry address is prcvided by
the lcaded IPL text.

Device Interrupt vectors: Lccations with hex addresses 00100060
thrcugh 001000FF are reserved for device interrupt vectors. Each IOC is
assigned a fcur word interface dependent interrupt vector cf the format
shcewn in Fiqure 1 below. Note that at a minimum, each type ¢f interface
has a separate vector address for program interrupts (generated by the
T9C instructicn INT) and for 1I0C errcr interrupts. The procedure
invcked has at least cone parameter which is the physical address of the

interruot vecter that was used.

Central Processor interaction with I/0

The Central Prccessor interacts with the 1/0 subsystem through the shar-
ing of memcry (described above), special instructions, access tc 10C
registers, and interrupts. This sectiocn discusses the latter three

areas of interaction.

11-4.5
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| |
| Location Parallel Serial PP 1553B |
: 001000x%0 program input pProgram program :
} 001000x4 error input error error :
: 001000x8 device cutput program reserved {
: 001000xC reserved cutput error reserved :
: Figure 1l: Interrupt Vectcr Assignments :
e e :
SET 1/0 Segment - CPU instruction: This instructicn has tw¢ address

cperands, a Seqg cperand that maps tc¢ the physical address ¢f an IOC seg-
ment specifier and an Adr c¢perand that specifies a virtual address in
the segment to be used. 1f the Seg cperand deces not map to an I0OC seg-
ment specifier, a Segment.specifier excepticn c¢r hard memory error will
result. 1If prctection is enabled, the protection attributes of the'seg-
ment centaining virtual address Adr are checked. A channel program seg-
ment must have instructicn access; message and data segments must have
read/write access. An invalid Adr cperand causes conditicn code bits to
be set indicating the type of errcr (Z is set for invalid address, N is
set for protecticn viclaticns) and the segment specifier is set to pre-
hibit all accesses. Tc enable an cperating superviscr to easily prohi-
bit all Accesses, the wvirtual address FFFFFFFF is always considered
invalid. As menéioned before, the ccntents of the I0C segment specifi-
ers are implementaticn dependent but sufficient tc allew an I0C t¢ vali-
date a virtual address as being within the specified segment and to

relccate the virtual address tc¢ a physical address.
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Starting and Stopping 1/0: The process of starting an 1/0 ¢peraticn c¢n
an I0C 1is relatively simple. In the general case, the prccedure to
start an I/0 cperaticn requires the fcllocwing addresses:

1. Pointer tc the first instructicn in the Channel Prcgram. This
address alsc defines the channel program segment.

2. Pcinter to the Message area. This address alsc defines the message
segment.

3. Pcinter tc the data buffer. This address als¢ defines the data
segment.

4, Pcinter to procedure to be inveked in case ¢f an 10C errcr inter-
rupt.

5. Pcinter to¢ procedure te he invoked by an 1I0C proegram interrupt.

5. Psinter tc the 10C register blecck, or scme indication of the 1I0C
which is tc perform the cperation.

Jsing this infermaticn, the follewing steps can be performed te initiate

an 1/0 cperation:

1. Verify, using bits 0 and 1 ¢f the Channel Status Register for the
I2C that the I0C is nct active. The first two bits of the Channel
Status Register 1indicate the current c¢verall status of the INC.
The CPU sets/clears bit 0 tc request the 10C t¢ start/step the cur-
rent channel program. The 10C sets/clears bit 1 ¢f the Channel
Status Register tc¢ indicate whether it is currently active/stcpped.
1f the 10C is active when the request is made, the pregram may want
te: 1) queue the request; 2) halt the current I1/0 c¢peration; or 3)

pass scme errcr indication back to the caller.

11-4,7
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2, Issue the SETSEG instruction for the three segments. If the SETSEG
fails for any ¢f the segments, the program may wish to return an
error indication or it coculd continue and allcw the IOC error
interrupt t¢ be taken when the 1I0C discovers that nc¢ access is
allowed to the segment.

3. Place the pointers toc the interrupt handling prccedures in the
appropriate interrupt vectors (or in  a control block accessible to
system provided interrupt rcutines).

4. Place the Channel Program address and the Message address in the
Channel Program Counter and Message Pointer of the 10C.

5. Set bit 0 of the Channel Status Register indicating that the I0C
should start.

Note that only steps 2 and 3 of the above process require intervention

by a privileged procedure. Once those steps have been performed, a

nen-privileged process with access te the upper half of the 10C register

block coculd, with reasonable security, be allcwed to start and stop its
own I/0 cperations.

CPU interrupts: An IOC c¢r device may interrupt prccessing by the CPU if

the pricrity of the interrupt request is greater than the pricrity at

which the CPU is currently executing (contained in the PSW). Interrupts
are treated as prccedure calls with the device or 10C (plus IOC inter-
rupt type) determining the fixed 1locaticn in memcry containing the
procedure entry address. All interrupts execute cn the Kernel context
stack and the Base bit ¢f the current cocntext is set on. The interrupt
precedure will be considered privileged if the entry in the interrupt

vector pointing te the procedure has bit 31 set on.
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Analysis of Nebula Architectural Support for 1/0

If a device cor contrcller requests an interrupt, it specifies the
interrupt pricrity (in the range 0-31) and the physical locaticn of the
interrupt vector containing the virtual address ¢f the interrupt prcce-

dure. The prccedure has access toc the physical vectcr address as a sin-

gle read-cnly parameter.
- I0C requested interrupts may be generated by errors or by the INT
- instructicn. The procedure invcked is specified in the errcr or prcgram

interrupt elements ¢f the fcur word interrupt vector assigned te¢ the 1I0C

(See Figure 1). When invcked the procedure has access to twe parame-

s,

ters: the physical vector address which contained the address ocf the

procedure; and the interrupt code,(2) The channel prcgram may be sus-

) A

pended if an INT request canncot be serviced because the CPU is executing

at an equal or higher priority.

B e o
‘ . -

I1/0 Processor Instruction Set
In general, 1I0C instructions are halfwcrds and are classified as data

transfer instructions ¢r controcl instructions. The 16 bit instructions

contain an eight bit cperation ccde and an eight bit value that is usu-

ally interpreted as an cffset or index in halfwcrds from the wvalue in

I.!'

the message pcinter register. For the PPP interface, bit 7 ¢f the cper-
ation code indicates that the informaticn to be transferred is data (bit
7 = 0) or coentrel/status (bit 7 = 1).

I0C Transfer Instructions: At the start of a . data transfer cperaticn

y * o
O

the accumulator centains the number of units of information tc transfer.

'.W\ 34

At the end ¢f the cperation the accumulatcr contains the number «f units

¢« OE EmE e e T T
(2) The interrupt ccde is the 10C error cecde for interrupts caused by
.. 10C errcrs. For interrupts caused by the INT instruction, the
&f interrupt code is the value of the I0C accumulator.
(
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in the original ccunt that were not transferred (the channel program
status register contains the reascn for early termination of a transfer
cperatiocn). For the PPP and 1553B interfaces, a unit of infcrmation is
a 16 bit halfword and for the SPP interface a unit ¢f information is an
eight bit byte.

The following section briefly describes the must general cases of the
10C data transfer instructicons, Instructicns used with specific inter-

faces may differ slightly in detail or in functions performed.

* READ - specifies cffset in message that is a 32 bit virtual address of

a buffer. The buffer must be in the data segment.

* RDTMSG - specifies offset in message that is the starting locaticn to

ROl L A e
RS A

receive the infcrmaticn.,

* WRITE - specifies ¢ffset 1in message that is a 32 bit virtual address
of a buffer containing that data toc be written. The buffer must be in

the data segment.

* WRFMSG - specifies coffset in message that is the starting address of

the data to¢ be written.

* WRLIT - the offset is a reserved field. The instruction is followed
by a 32 bit virtual address ¢f the data tc bhe written which is in the

pregram segment.

* RT2RT ~ index value intc message is a four halfword bhlock used to ini-
tiate transfer between twe remcte terminals on a 1553B interface and

te store status informaticn at completion of the transfer.

I1-4.10
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I0C Control Instructions: This sectiocn briefly describes the I0C con-
trol instructions. The description is designed to give an idea of the
kind ¢f instructions available. These instructicns operate consistently

for ‘all types of interfaces.

* LOAD - lcad accumulator from cffset intc message,.
* STORE - store accumulatcr at offset intc message.
* LOADST - lcad accumulatcr from offset intc 10C register block.

* IADD, 1ISUB, IAND, IOR - perform the cperaticn with the accumulator and
the indexed halfword from the message. Place the result in the accu-

mulator.

* LOADL, 1ADDL, IANDL, IORL - perform the coperatiocn with the accumulator
and a 15 bit literal fo¢llewing the instructicon, Place the result in
the accumulator. The last eight bits ¢f the LOADL and IADDL instruc-

tions are reserved.

* ADDTA - indexed lccation in message specifies a 32 bit werd in the
message that is added to the contents of the accumulater and revlaced

by the result.

* LSHFT - the accumulatcr centents are shifted left or right by the
amocunt specified in bits 8 through 15 of the instructicn (interpreted

as a signed shift ccocunt).
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Analysis of Nebula Architectural Support for 1/0

* LMP ~ indexed 1lccation in message is a 32 bit virtual address which
replaces the current contents of the message pointer register. 1If the
new message pcinter is zerc, the procgram is halted and bits 0 and 1 of

the channel status register are cleared.

* BRIO, BRNEIO, BLSSIO, CASEIO, BCASE - transfer contrcl within the
channel program based on the contents of the accumulatcr. BRIO causes

a branch regardless of the contents of the accumulator.

* INT - a CPU interrupt is generated at a priority as specified in bits
11 through 15 ¢f the instructicn. An 10C error interrupt ¢f Inter-
rupt.pricrity occcurs if the specified pricrity exceeds the maximum
pricrity specified in the channel confiquration register. The con-
tents ¢f the accumulatcr will be passed as a parameter tc the invoked

precedure.
* HALT - equivalent tc lcading the message pointer register with zerc.

* CONTROL - prevides ability to perform interface dependent contrcl

functicns for SPP and PPP interfaces.

1/0 PROBLEM AREAS
Mincr Errers or Omissions
The Nebula specification has suffered some consistency problems as
changes are made that are not reflected in all parts of the dccument.
Fcr instance, althcugh a set of correcticns has been 1issved since the

change t¢ the size of the I0C register blcck, the description of the

I1-4.12
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LOADST instructiocn for the 1I0C has nct been updated tc reflect the new
manner in which it must cperate,. Also, the descripticn of LOADL and
IADDL indicates that the 1last eight bits of the instruction are
reserved; the description ¢f IANDL and IORL contains no menticn ¢f such
a restriction although there is nc reason tc believe the instructions

are nct similar in that respect.

The IOC HALT Instruction
The functicn of the HALT instruction seems adequately perfcrmed by the
LMP instructiocn with a new message pointer of zero. Is the HALT

instructicn fcr the IOC necessary?

The SETSEG Instruction

The descripticn ¢f the SETSEG instruction misses several important
details. The problems became apparent while thinking abcut the sequence
of cpoeraticns necessa.y tc¢ start and step 1/0, and the pcssible errcor
conditions that would have tc be handled,

Operand Access: The twe coperands of the SETSEG instructicn are
described as "address cperands" yet cne of the cperands must map tc¢ cne
¢f the IDC segment specifiers in an assigned I0C register blcck. Since
address operands Ac¢ not cause access viclations, is it really the desig-
ners' intent t¢ allcw a SETSEG instructicn to be issued for an 10C whose
register blcck was covered by a virtual seqment with "nc access" protec-
tien? An alternative interpretaticn which would require "read/write"
access seems to eliminate much ¢f the protecticn afforded by the SETSEG
instructicon. Regardless o¢f the interpretation, the term "address coper-

and” is being wused in a fashicn which is nct entirely consistent with
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the spirit o¢f the rest of the specificaticn and a mcre detailed explana-
ticn is warranted.

I0C Active: The descriptiocn of the SETSEG instruction contains ne res-
trictions ¢n issuing the instruction while the I0C is active. In other
sections of the specification, an I0OC errcr of 10C.active is generated
if registers such as the channel precgram cocunter are altered during IOC
executicn, 1Is it an cversight that an 1I0C errcr interrupt is nct speci-

fied when a SETSEG is executed for an active 10C?

Maximum Priority for INT Instruction

The generaticn ¢f an I0C errcr interrupt when the pricrity in the INT
instructicn exceeds the maximum pricrity sericusly affects program port-
ability. The maximum channel prcgram pricrity is coentained in the chan-
nel coenfiquration register. Programs using the I0OC cannct easily access
the maximum pricrity since access would noet normally he given toe the
lower half of the 10C register bleck. The pricrity ¢f a prcgram inter-
rupt is contained in the INT instruction which is in a segment with
"instruction®” access and is therefore not easily modified. I1f the INT
instructicn specifies a pricrity larger than the maximum pricrity, an
ID2C errcr interrupt coccurs. A prcogram cannct find cut what the maximum
pfiority is and weuld, at any rate, have difficulty changing the pricr-

ity in the INT instructicn.

Device and I0C Interrupt Vectcrs

.The ability ¢f an cperating superviscr te be flexibly eccnfigured for a

particular 1/0 confiquraticn brings up scme preblems with the manner in

which the interrupt vectcrs are specified in Nebula.
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o Analysis of Nebula Architectural Support for 1/0

Limitation ¢n Number of 10Cs: The area reserved for device and I0C
interrupt vectors is from 1locatiocn 00100060 thrcugh 001000FF. This
address range precvides for a maximum of ten 1/0 Contrcllers tc Dbe
attached tc a Nebula computer. While the maximum is prcbably sufficient
for many embedded coumputer applications, ten 1I0Cs is a sericus restric-
ticn if the Nebula architecture is ever tc be extended tc¢ mainframes.
- Ncte that any directly connected devices have tc¢ be previded with inter-
rupt addresses further reducing the number ¢f IOCs that may be attached.
Program Visibility of Interrupt Vector: In many circumstances, the
f cperating superviscr will need to know the address of the interrupt vec-
t‘; tor asscciated with a particular I0C cor device. Trusted prcgrams which
Iﬂ‘ are allowed te¢ perfoerm their cwn I/0 coperations and field their cwn

interrupts will need a method of specifying procedure entry addresses in

the interrupt vectors., The only safe methcd is tc¢ supply this informa-
ticn te the cperating superviscr which fills in the apprepriate inter-
rupt vecter -- s¢ long as the superviscr knows the leocaticn of the
interrupt vector tc be used. Requiring the cperating superviscr tc be
pre-jenerated with the lccaticn o¢f the interrupt vectcers for each I0C
greatly restricts portability ¢f the superviscr and seems unnecessary

since the 19C must have the vectcr address available internally.

Reset and IPL Sequences
The Reset and IPL sequences require mcre specificaticen. 1t is crucial
that the machine be 1in a specific state when the reset or IPL rcutines

are invcked., Examples ¢f areas of concern are:

i

. on 4
i

" 1I-4.15

il e e suius g




Sl RS "R S e S * e e PR e ML MRS St e T SR i B St Nl ity S M AT Vs Mt Al S S bt Sl AR A Uh S S PRI SR A e

- — - - ——— —— —— ——— —— —— — — - — —— — ——— ——— — —— — — ——— —————— ———————— - ——— > - —

* The state of the 10Cs and devices following a reset or IPL are not

specified ... are they halted or might they be active?

* New kernel context stack and supervisocr map pcinters are cocntained in
twe woerds pointed to by lecation 00100044 ... exactly when in the IPL

sequence are these values made current?

OPERATING SYSTEMS DESIGN REQUIREMENTS

Impact of Previgusly Discussed Problems

Many of the procblem areas discussed in the preceding text dc¢ nct seri-
cusly affect the design of operating systems for Nebula computers
because the prcblems relate tc¢ ambiguities ¢r lack of detail rather than
design flaws. Careful design ¢f the ¢perating system is required tc
meet 7Jcals of performance, security, verifyability, ete., but except for
the prcblems cutlined abeve and the discussion of 1/0 interrupt preoce-
dures discussed below, few sericus cobstacles to this process are seen.
The prceblems of the maximum pricrity for the INT instruction and the
limitaticn on the number of 10Cs are of such a nature that there is nc
~lear apprcach to the design ¢f an c¢perating system that weuld aveid
them.

The remaining problem which can be partially sclved is the cne of
pregram visibility ¢f the interrupt vector addresses. The first thing
tce ncte abcut the proeblem of the vector addresses is that the interrupt
prccedure is passed the physical vectoer address when the information it

really needs is which 10C generated the interrupt and why (errcr or pre-
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gram interrupt). The "sclution” tc the problem then is tc build a cress _:j

reference table between the physical vector addresses and the lccaticn
«f the 10C register blccks. This table must be regenerated each time .
the lccaticn of the interrupt vecter 1is changed and the difficulty of -

finding errcrs in this generatioun process can be time coensuming.

I/0 Interrupt Proccedures ' %
1/9 interrupts (and scoftware interrupts) are much different than traps -
and excepticns because the task currently executing may have ncthing te

de with the reascn for the interrupt. The interrupt is prccessed by i;ﬁ%
switching tc the kernel ~context stack and calling a procedure whese
address is cobtained from a certain physical leccation. The prccedure
must be present at the same lccation in the memcry map of all tasks, sc ;fﬁf

in mest cases the 1/0 interrupt preccedure will have tc be referenced

tarcudh the superviscr map. In A multi-tasking envircenment, A prccess ) q

[

whizh has bheen given the ability tc¢ initiate I1/0 cperatiocns by directly -
manipulating the registers in the upper half ¢f the 10C register blcck ;f;:
cannct be allcwed te handle 1/0 interrupts from the 10C withcout impact-
iny s2curity. Interventicn by the c¢perating system is necessary tc¢ per-
form a switch te the task respensible for the 1/0 before an applica-
; . ticn's 1/0 interrupt rcutine can safely be given control.
- The task switch with asscciated lcading and stering of cached infeor- =
maticn may impact the ability ¢f a Nebula preccesscr to respoend quickly Sl
iji te interrupts, particularly if the amcunt o¢f cached information beccmes . ;;

| large in an attempt t¢ improcve processcr speed. To aveid this impact,

the cperating system would have tce provide a mere complex (and unfertu-
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nately, more programming errocr prone) interface tc allow a validated
L supervisor procedure to handle I/0 interrupt processing without requir-

ing a task switch each time.

PROPOSED MODIFICATIONS TO NEBULA STANDARD
o Clarifications
LOADST: The description ¢f the LOADST instructiocn ¢f the I0C shcould be

changed tc relect the increased size o¢f the 1I0C register block. The

suggested change would be to interpret bits 8:15 of the instruction as a

halfwoerd coffset frem the CCR with bit 8 forced on  to prevent access to S

° the lower half of the I0C register block. -]
o

IORL and IANDL: A sentence shculd be added t¢ the descripticn of the JRA

A IORL and IANDL 1instructicns specifying that bits 8:15 of the halfwerds

centaining these instructions are reserved.

SETSEG

Use of address cperands: The impact of using address operands for the ;ik:;
segment specifier requires mcre explanaticn. The suggested change is to :
spacify that there must be a read/write segment mapping the lcwer part
¢f the 1I7C register block and that protectiocn can be provided by setting

the privilege bit in the map entry for that segment,

I0C Active: The TO0C 1is unlikely to perform preperly if a SETSEG

instructicn is 1issued for one ¢f its segment specifiers while it is

active. Suggest the addition ¢f a sentence specifying that execution of
@ a SETSEG instructicn by the CPU while the 1I0C is active (bit 1 ¢f chan-

nel 3tatus set) shall cause an INC errcr interrupt with fault ccde of

1. Artive,. ~ﬁ
. -
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Maximum Priority for INT

Te allew increased program portablity, the INT instructicn should be
changed sc¢ that if the pricrity specified 1in bits 11:15 ¢f the instruc-
tion exceed; the maximum pricrity in the channel configuration register,
the maximum pricrity is used. References tc¢ an Interrupt.pricrity errcor

interrupt for the T10C may then be deleted.

Device and IOC Interrupt Vectors

Preblems of limitations on the number of I0Cs and pregram visibility of

the interrupt vector would be eliminated if the focllowing changes were

made:

1. When the T190C requests an interrupt, it provides the address c¢f the
I0C register bleck, the cffset in the interrupt vectoer block te be
used, and the interrupt pricrity.

2. The lcwer half ¢f the 10C register blceck contains the 32 bit physi-
cal address of the interrupt vectcr te be used.

3. During interrupt prccessing, the CPU fetches the interrupt vector
address and adds the cffset tc get the address containing the
interrupt prccedure entry address.,

4. The interrupt procedure has access tc an additicnal parameter which
is the address ¢f the 19C register blcck for the 10C requesting the
interrupt.

The changes described above are meant t¢ be as compatible as pessible

with the current Nebula architecture and are patterned after the pro-

cessing for SVC and OPEX instructions.

11-4.19
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Analysis of Nebula Architectural Suppcrt for I/0

Reset and IPL

The state of the machine after the reset or IPL switch is activated must
be completely specified. 1In particular, the standard should include the
stipulaticn that all 10Cs are halted. Alsc, to prevent confusicn, the
standard shculd be mcre detailed in its descriptiun ¢f the IPL sequence;
i. e. there should be a sentence stating that the pcinters tc the kernel
context stack and the superviscr map are lcaded inte their respective
hardware registers after the IPL data is lcaded but bhefcre the contrel
is transferred t¢ the procedure address specified in the IPL data. Any
restrictions on the format of the IPL data shculd appear in the stan-

dard.

IMPACT OF MODIFYING THE CURRENT STANDARD
Considering the extent ¢f the recent redesign c¢f the 10C part ¢f 1862a,
it is n¢ surprise that there ara scme additicnal preblems which need te
be addressed. Adoption of the propesed changes and adding some of the
missing details tc¢ the standard shculd greatly improve confidence in the
pertability ¢f cperating systems between Nebula computers.

I1f the propesed changes or similar changes are nct made tc¢ the Nebula
standard, it will be quite pcssible that cperating systems will net be
transportable between machines that conferm te the standard. Since the
cperating system 1is a critical interface between application programs
and the hardware, requiring cperating system changes tc¢ use different
Nebula computers great., increases the prcbability that the "environ-
ment” the cperating system prevides is not the envircnment required for

the application program to operate correctly.

I1-4.20
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The changes proposed in the preceding sections have their primary

impact on the I10C. Considering the recent changes to the 1I0C part of

the specification (since the release ¢f 1862a), it appears unlikely that
many of the propcsed changes would have a significant additicnal impact ;;E;;«
on the implementaticn effort. The major change suggested was in the IOC
interrupt vectcrs; for that change, scme care was taken tc¢ proupose a

scheme compatible with current handling of OPEX and SVC instructions s¢

gt

that commen logic or microcede cculd be used,
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1. Introduction

Nebula (MIL-STD-1862) is a 32-bit Instruction Set Architecture
which is being developed for use in embedded computer systems.
JOVIAL-J73 (MIL~-STD-1589B) 1is a high-level 1language in which
programs are written for these embedded computers. In this
report we evaluate the suitability of Nebula as a target for
applications which are written in JOVIAL. Any unqualified
references to JOVIAL refer to the 1anguége which is described in

MIL-STD-1589B; references to other JOVIAL dialects are qualified.

1.1 Background
Nebula was examined from three basic viewpoints:

l. with respect to efficiency of execution for JOVIAL
programs.
2. With respect to ease of compilation into efficient code.

3. With respect to ease of compilation.

Note that these objectives are related, but are different. There
may be an architecture for which it is possble to hand-code
efficient programs but which does not lend itself to easy
compilation. Similarly, a simple architecture may make it easy

to compile code but difficult to generate efficient code.

I1-5.1
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It should be emphasized that not only must it be possible to -
write efficient programs for a given architecture, but it must y?tfg
also be possible for the compiler to translate source into S
efficient object programs without an undue amount of effort. An
architecture for which a great deal of analysis is necessary to
generate efficient programs may be worse in practice than another

which is worse in theory, but whose potential is more easily

realizable.

Problems which are encountered in typical JOVIAL implementations f)fﬁ'
are discussed, roughly in order of decreasing difficulty of ;}ffw
implementation on Nebula. In some cases problems which are, in f—f!!
general, potentially great for other architectures are relegated

to the end of the 1list, because they pose no particular

difficulties on Nebula.

Areas examined were:

1. Parameter procedures.

2. Truncation and rounding.

3. Parameter labels.

4, Abort statement.

5, Parameter passing and referencing.

6. Data referencing and storage allocation.
7. Bit strings.

8. Character strings.

9. Operand sizing.
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10. Optimization.

11. General Machine Idiosyncracies.
12, Loops.

13, Case.

14, Part-Word Operands.

15. star tables,

16. Fixed-point Arithmetic

17. Data Allocation.

18. Relationals in Value Contexts.
19. Tight Tables

20. Address Computations (including subscripting).

Several other areas, which have caused problems in the
implementation of other languages, but which are of no great
concern in the implementation of MIL-STD-1589B JOVIRL are also

discussed. These include:

. Parallel Tables.

Tasking.

1
2. Checking.
3
4

. Input/Output.

.e e
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1.2 Executive Summary

It is obvious that the Nebula Instruction Set Architecture has

been designed with high-level languages in mind. On the whole,

it is better suited for the implementation of JOVIAL than are
most architectures. Among the features of Nebula which are

particularly well-suited to JOVIAL are:

1. Fixed point operations.
2, Three operand arithmetic operations.
3. Associating sizes with operands, rather than with

operators.

Slal

4. Relational operators which generate boolean results.

5. Scale operator.

-
LR I IR S

Areas of Nebula where we see problems or inefficiencies are:

1, Parameter labels

2K B

2, Parameter passing and referencing

n

X

B YR

L

3. Data referencing and storage allocation

4, Parameter procedures

Ty

F 5. Character strings

;: 6. Bit strings

Ez 7. Truncation and rounding
E’ 8. Operand sizing

9. Part-word operands

S,

P

10, Optimization

o
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11. General Machine Idiosyncracies

Parameter 1labels present some serious implementation problems,
because the context stack is hidden from user programs.
Additional instructions to make the manipulation of the context
stack simpler are recommended.

-
s

‘i The problems of parameter passing have to do with passing
{ parameters by value and referencing up-level parameters. Changes
9

}

to facilitate these operations are recommended.

Storage allocation 1is 1largely unsupported in Nebula. We feel
: that high-level support for allocating data on the stack should

be provided.

Operations on variable 1length character strings which require
padding present problems on Nebula. The JOVIAL rules for
overlapped moves exacerbate the problems. A suggestion for

Y additional character string instructions is made.

. Nebula provides good support for short bit strings, but less
support for longer ones., The addition of a long bit move is

recommended,
( JOVIAL associates rounding and truncation with individual

operands, but Nebula has global flags which indicate what sort of

rounding is to take place. Also, JOVIAL allows rounding and

II-5.5
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truncation for integer and fixed-point items. Two alternatives

for handling these problems are suggested.

JOVIAL permits part-word operands to be used in expressions.
Nebula provides facilities for extracting and depositing these
operands but does not allow them to be used directly in

computations. We suggest a method for permitting this.

Features of Nebula such as the multitude of addressing modes,
three operand arithmetic. instructions, and the fact that
registers are not passed to the callee, require new strategies
for optimization if full advantage is to be taken of the

architecture.

Nebula is better that most architectures in avoiding machine
idiosyncracies. There are some minor ones, however, which are

pointed out in this report.

It should be noted that in each of these areas Nebula is no worse
than ordinary general purpose register architectures, and is

better than most. Since we are examining the architecture before

the machine has been built, we have used a stricter standard for
judging than we otherwise would have to measure the "goodness" of
the 1rchitecture; More high-level support is expected from

Nebula than would normally be expected £from an existing

architecture,
I11-5.6
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2. Present JOVIAL Implementations

Before we examine in detail the problems of implementing JOVIAL,
we discuss different architectures and the kind of support they
\ provide. JOVIAL compilers have been implemented for a variety of

target machines. MIL-STD-1589B compilers exist for the DEC-10,

IBM370, TI990, 1750A (MIL-STD-1750A) and the 28002, and are being

developed for a number of other machines including VAX, and the

. >~ g M
e P A
: SRR o

PDP~11. Compilers for other dialects of J73 (MIL-STD-1589 and

MIL-STD-1589A) exist for the Univac 1108 and Collins CAPS, among

S others. :';mia
£ e
. 4

4

Nl

Cf all of these implementations, the CAPS architecture stands out
. as the one which supports JOVIAL most efficiently with respect to
comnpactness of code. The MIL-STD-1750A is also relatively good.
The machines with the larger word sizes (DEC-10, Univac 1108, and

IBM370) do not fare as well.

There are several reasons for this. Most important is the
efficiency with which it is possible to access operands. CAPS

and the 1750A both provide shorthand encodings for opetand

addresses. CAPS is a stack-oriented architecture which addresses
instructions by byte, but data by word. Since it is _}@7-~

stack-oriented, operands are somewhat divorced from operators. A

] single byte instruction can be used to access any of the first 16 )
words of 1local data in a procedure., Two-byte instructions can ﬁ-ijhj

address the first 256 words of data. Page registers are supplied

I1-5.7




yorw

Jovial/Nebula Suitability Report 10/6/81

so that the references to commonly used data can be shortened.
The 1750A architecture contains base registers and allows certain

operations on dedicated registers and an operand within 256 words

L — T
"‘ . A o "

§

)

| e

l_.""_ S g

of the address contained in a base register, to be specified in (f;f

hi only two bytes. The machines with the larger word sizes do not
-

]
A
M

L
. ’
‘2’ s a’'a s

provide this sort of optimization. Memory reference instructions

always take a full word or more, AN

s

Another area in which CAPS excels is that of procedure calls, : {7%
Parameters are pushed onto the stack, just as for ordinary :: f&
arithmetic operations. When a procedure is called, the local ii;_éj
frame pointer is set up so that the parameters are in the ff«—!

callee's local frame. In the called procedure, parameters may be -
referenced as if they were local data. Upon return from a
procedure, the requisite bookkeeping to restore the caller's

context is performed by the hardware. -

11-5.8 NN
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3. Nebula vs. Other Architectures

Since Nebula 1is an Instruction Set Architecture, rather than a
machine, it is not meaningful to speak of its efficiency with
respect to speed. Different implementations may have performance
characteristics whicn vary considerably. It is meaningful to
discuss compactness of code, however. As well as having a
bearing on how much memory is required for a given application,
it provides some clue as to how fast an implementation would be
relative to comparable implementations of different
architectures, since memory bandwidth is often a limiting factor

in machine speed.

The Nebula architecture is more regular that either CAPS or the
1750A, but in some respects it is also 1less efficient for
implementing JOVIAL. Both CAPS and the 1750A gain an advantage
in terms of space because they use assumed operands. On CAPS
only operands which are referenced from memory need be specified,
because it 1is a stack architecture, On the 1750A the dedicated
registers need not be specified, and base registers are
restricted to a subset of registers. This makes for a compact

encoding for some common operations.

CAPS is also more efficient with respect to précedure calling and
parameter passing, than is Nebula, because value parameters and
space management are both handled automatically. Nebula's

parameter passing mechanism is more efficient that the 1750A's,

II-5.9
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Both of these architectures suffer from the fact that value
parameters must be explicitly copied into local space, although
for small procedures, value parameters could be kept in the

1750A's registers.

Nebula is more efficient than the two architectures mentioned
with respect to operands which require complicated address
calculations. In both the CAPS and the 1756A the calculations
must be done explicitly, while in Nebula they are part of the

operand addressing mechanism,

Nebula is also more efficient for handling large programs than
either of those architectures. CAPS has a somewhat awkward

universal addressing scheme which must be used to reference code

or data which is not in the same 64K.

Architectures such as the DEC-10 and the IBM 370 are not nearly
as good as Nebula for compactness of code due to several
factors. Nebula provides short address forms for data operands,
and permits branches to be made relative to the program counter.
Operand references and short relative branches occur often in
computer programs, so the savings provided by short forms is

significant.
Another advantage that Nebula has over these two architectures is
that it provides more memory-to-memory operations. Since the

expressions which appear in programs are typically simple

I1-5.10
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[Knuth71,Tanenbaum781, memory-to-memory operations are desirabie
[Myers78]. Based on statistics obtained by hand-compiling the
mix of statements given in [Bloom74], we estimate that Nebula
code may be more compact than code for the PDP-10 or IBM 370 by a
factor of 2. Although this statement mix is compiler-oriented,
rather than application-oriented, it is likely that application

code would show a similar degree of compression.

Nebula is like the VAX architecture in many ways. Thus, it seems
reasonable to believe that the two would show comparable code
compactness., Nebula has a number of advantages over VAX with
respect to JOVIAL. The most important is that data allocation in
Nebula has a better correspondence to JOVIAL than does that of
VAX. This is a serious problem in VAX for JOVIAL
implementations. It is discussed in detail in chapter 4. Another
advantage is that the addressing modes in Nebula correspond more
Closely to those found in JOVIAL programs. This is particularly
true for based or parameter tables, where indexing must be
applied after indirection. The parameter passing mechanism is
slightly more compact in Nebula than in VAX. Also, the fact that
sizes are associated with operands, tathef than operators allows

nore efficient code to be generated.

On the whole, Nebula is better suited for supporting JOVIAL
programs than are virtually all other current architectures.
There are some inefficiencies, but they should not be

particularly difficult to remedy.

I1-5.11

LR R
DR .-t T
R R e
e L{-XL‘[L.I.".AJL!.I *




4

dal v

i)
BN )
e e bty

Jovial/Nebula Suitability Report 10/6/81

4. JOVIAL Implementation Issues

For each of the language-related areas below, we discuss problems
which arise in implementing JOVIAL for typical targets, and how
well Nebula supports those language features. If we feel that
better ‘support could have been provided, we analyze the effects
of the problem and recommend modifications to Nebula to correct
the problem, or sketch a way around the problem. In certain
cases the solution to one problem affects the solution of
others. Our recommendations for these related problems are

collected together in section 7.

4.1 Parameter Labels

JOVIAL allows labels and procedures to be passed as parameters.,
In both of these cases a reference to the formal parameter is a
reference to the actual parameter in the environment in which it
was originally passed as a parameter. This implies, for example,
that a branch to a parameter label may be used to Jjump part of
the way out of a recursion. For this reason, the stack pointer
must be passed, along with the value of the label itself, if the
goto is implemented as a branch directly to the label. 1If a
display is used for up-level references, it is necessary either
to save a copy of the display when the label is passed as a

parameter, or to unwind the stack and restore the display to its

II1=-5.12
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state at the call which passed the label.

An alternative implementation is to pass a flag back to the

caller to indicate whether a branch has occurred. Extra code

3
nt
v
d
~
-
¢
'

must then be generated in the caller to branch, based on the

value of this flag.

We are unaware of any hardware which provides the high 1level
support required by JOVIAL for parameter labels. Some
architectures such as CAPS allow branches to parameter labels,
complete with stack unwinding, but the branch is always to the
occurrence of the label in the most recent invocation of the
procedure containing it. This is not necessarily the correct

one, according to JOVIAL rules.

One of the most difficult problems in implementing JOVIAL on

Nebula concerns the handling of label parameters. These problems

arise because the context stack is hidden from programs executing
in user mode, and the fundamental differences between the
semantics of parameter labels and Nebula exception handling
mechanism, The differences are these: exception handlers are
statically associated with procedures, but parameter labels are

éynamically associated with environments; and, there is one

exception handler for a procedure, but a number of label

p——
RN

parameters may be passed for one call. When an exception is
raised, the most recent exception handler is invoked, but a label

parameter may refer to the label in a previous invocation of the

—- ~-
RN AR g
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procedure. When a goto to a parameter label is performed, both
the context stack and the data stack must be trimmed back to the

proper level.,

As described above, it is relatively easy to restore the data
stack to the proper height, if the stack top at the call is saved
with the label parameter. However, the user program has no

direct mechanism for setting the context stack back to its height

at the <call. It is possible to create an exception handler for
' each procedure which passes a parameter 1label, to raise a
parameter label exception at a goto parameter, and to check the
data stack level at the handler, to determine if the exception

needs to be reraised to get to the proper stack levels. The only

problem here is that the stack height taken from the formal label

parameter must be passed back from the point of the goto, back to

the exception handler. This could presumably be done by storing

the pointer in a global cell.

Llthough it is possible to implement label parameters on the
current Nebula architectures, it would be useful to introduce
some additional instructions to make the process simpler, and the
code more compact. These instructions are: get context (GETCON)
and branch with context (BRCON). Get context would return a

context marker into its operand. This marker could be

implementation dependent. Using it as an operand in a context

other than where a context marker is required would produce

- unpredictable results,
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Branch with context would take two operands, an address operand
and a context marker. Executing a BRCON would cause the context
stack to be popped to its state when the context marker was
created. The next instruction executed would be taken from the
location specified by the address operand. Note that a
displacement is not sufficient for this instruction, since the

label is execution-time variable.

4.2 Parameter passing and referencing

JOVIAL allows the programmer to specify the method by which
parameters are passed: by value, by reference, or by result.
Most machines do not provide such support with respect.to
parameter passing, letting the compiler use general purpose
primitives for this purpose. Some architectures which support
stacks, such as CAPS, allow parameters which have been pushed

onto the stack to be referenced as local data within the callee.

The most efficient way of passing parameters is highly dependent
on the particular architecture, but some generalizations can be
made. The compiler is often required to generate a prologue
and/or epilogue in the called routine for the purpose of copying
value parameters in, and reference parameters out. Whenever
possible copying should be done by the callee; rather than by the

caller, because calls outnumber procedures.
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Nebula provides some high-level help in passing parameteré but
not in the full generality required by JOVIAL. The Nebula
parameter passing mechanism is equivalent to passing all
parameters by reference; value and result parameters are not
handled directly. This is not a big problem, however, since
value parameters may be moved into local ‘space during the
prologue, and result parameters may be moved out during the
epilogue. This does imply, though, that return statements in the
JOVIAL source be translated into branches to the procedure
epilogue, rather than into Nebula return instructions.
Generating prologues and epilogues and handling returns in this
manner is common and poses no great problems, but it does become
more serious with ‘ small procedures, however, where
prologue/epilogue overhead can become a significant percentage of

the entire procedure in both space and time.

(In Ada formal parameters cannot always be moved directly into
the actuals by epilogue code, due to constraint checking
reguirements [Davis8l]. It would be possible to pass
conpiler-generated temporaries for those parameters whose
constraints did not match those of the formals, and to copy the
returned values from those temps to the actuals in the caller.
This would not be a bad strategy if the constraints usually were
compatible, but would double the number of moves if the
constraints were always more stringent for the actual

parameters.)

II-5.16
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One problem which is potentially major is in referencing up-level
parameters. Since the context stack is protected from user
programs, it is not possible to reference up-level parameters 1in
a straightforward manner. It would be possible to pass the
up-level parameters on to the inner procedures in which they were
referenced, but procedure parameters would complicate this
process. Another possibility is to copy the parameters or their

addresses into local storage.

The CALL mechanism alone would not be sufficient except when the
compiler could be sure that there were no up-level references to
parameters; determining this would, of course, require extra
analysis by the compiler. Note, however, that in JOVIAL this
analysis is always possible; in Ada it is impossible in the

presence of separate compilations (Davis8ll.

If too much additional overhead is incurred due to procedure
calls and parameter passing, JOVIAL programmers may be tempted to
sacrifice readability for efficiency, by using global variables

or by avoiding procedure calls altogether.

Usinc a bit mask in the procedure header to indicate the
parameter passing mechanism should be considered. To Dbe
compatible with JOVIAL parameter passing, at least four modes
need to be provided: copy in, copy out, copy in and out, and
reference. These correspond to BYVAL input, BYRES output, BYVAL

output and BYREF parameters.
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Recommendations for a mechanism to allow references to up-level

parameters are discussed below under "Operand Addressing”.

4.3 Data Referencing and Storage Alllocation

JOVIAL allows static or dynamic allocation to be specified for
data which is declared in procedures. Thus, there are implicit
requirements on the data accessing mechanisms of the target

machine,

The requirements with respect to recursivity and reentrancy in
JOVIAL are very much 1like those of Ada with but a few
exceptions. The most important have to do with label and
procedure parameters, which are discussed in Sections 4.1 and
4.4. The other important difference is that JOVIAL procedures
may be recursive, reentrant or neither. This is actually a
relaxation of the requirements for individual procedures because
it permits implementations which are recursive but not reentrant,
or vice-versa. However, the net effect on the architectural

regquirements is the same,

Recursion is implemented by means of a stack. JOVIAL, like Ada,
allows nested procedures and up-level references to data declared
in containing scopes. Parameters to enclosing procedures may be

referenced, as well. There are several ways in which this is
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done. One is through the use of a display. This allows up-level
references to be made relatively efficiently, but requires
additional work at proc entry or proc entry and exit, depending

: on how the display is implemented. An alternative is to search

ﬁ through the static links at references. This makes procedure

v
W,
N
A

l‘..

¥

calls cheaper, but references to up-level data more expensive.

Hybrid methods have also been used [Hawkins63]),

On most machines there is little direct support for recursion.
Typically, scalars are referenced by using indexed instructions,
and the local frame pointer must be explicitly added to the

subscript for referencing tables. (The IBM 370, which allows an

index and a base register in the same instruction is a rotable
exception.) Some stack-oriented architectures such as the CAPS
and the Parczl Microengine do provide good support for '
recursion. The Motorola MC68000, which is a more ccnventional

architecture, has instructions (LINK and UNLK) which assist in

allocating and deallocating local data.

[ T TR

Reentrancy presents some different problems. Since reentrant
procedures may be executed concurrently by different tasks, it is
necessary that data accesses refer to different storage locations

fo: different threads of control. There are different levels at

which programs may be reentrant. Any routine may be sharable on

‘ hardware such as the DEC-10, which has code and data base )
d regicters which are hidden from the user. If the system uses the S

- same code base Ltut &« CGufferent data base for different tasks,
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reentrancy is achieved. A similar effect can be achieved by
altering the page map on systems which provide virtual memory.
If such hardware support is unavailable, reentrancy can be
achieved making all data references relative to that address.
This approach, like the one discussed for recursive procedures,
requires, on most machines, extra computations to reference table

entries.

Nebula does provide some support for recursion, in the form of
the stack pointer register and the stack oriented instructions
{(push and pop). The addressing modes are certainly adequate for
supporting recursion, although having an address mode which
assumed the existence of a local frame pointer could save some
space. (It would then be possible to access a certain portion of

the local frame with a one byte operand specifier.)

Up-level references are not very well supported, for several
reasons., There is no direct support for a display or for
fcllowing the links. 1In addition, because only the stack pointer
ig inrerited from the caller, it would be more difficult to keep

the disprlay or a pointer to the display in registers,
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4.4 Parameter Procedures

In the general case, parameter procedures present potentially
greater problems than do parameter labels. The environment must
be recorded, in order to implement calls to parameter procedures
in accordance with JOVIAL since they (parameter procs) musﬁ be
executed in the environment in which they were passed. The
actual method used to achieve this varies according to the method
used for up-level referencing, but one common way to implement it
is to copy the display at the point at which the procedure
rarameter 1is passed, and to pass the copied display along with
the parameter. Another possibility, if up-level references are
rade using the static links, is to pass a pointer to the current

stack frame along with the procedure parameter, and to mark the : 'f

¥
g
Tl

stack so that up-level references from within the parameter
procedure will bypass those stack frames between the parameter

proc's stack frame and the one in which it was created.

Nebula ¢frovides no special support for the implerentation of
1 parameter procedures, Our main concern is that if the

architecture is modified to provide support for up-level

e
- .

references for Ada, that the changes may be incompatible with
JOVIAL, because Ada does not permit procedures to be passed as

parameters. If a local storage allocation mechanism is added to

- ™
i :bxv A ]

Nebula, and the methods of data accessing are hidden from the

Y
)

user program (in a manner analogous to that currently used for

Eh O SRR
o . Ch

parareter references), it may be impossible to implement
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parameter procedures, unless special facilities are designed in

to the architecture.

4.5 Character string operations

JOVIAL allows moves to and comparisons of character string
operands which are not of equal length. A further complication
is that the byte function allows strings, whose lengths are not
known at compile time, to be manipulated. Although many machines

support character moves for equal length operands, there are few

(VAX is a notable exception) which provide an efficient way of
implementing moves for operands of unequal length whose lengths
are not known at compile time. An inline implementation of such
a move would require taking the nminimum of the two lengths,
performing the move and then filling with blanks if the receiver
is longer than the source. Alternatively, if the operands do not
overlep, the destination could be filled with blanks first, and
the source value moved in later. Assignment is further
complicated by the rules for overlapped move (see below). Unless

the hardware gives the correct results for an overlapped move or

unless it can be determined that fields do not overlap, the
compiler must generate an extra move to a temp, control the order
r’ in which bytes are moved, or generate a subroutine call. This
P can require extensive analysis, if worst-case code is to be

avoided.
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Nebula gives good support in the form of the move block (MOVBK)
instruction, for moves in which the source and sink are the same
length. MOVBK together with move multiple MOVM provide fairly
good support for moves of constant 1length where padding is
required. However, the support for moves where the source and
sink may differ in length, or one is of variable length, is only
moderate. The remarks made above with respect to variable length
moves apply to Nebula. An added complication is the fact that
move multiple takes an unsigned count. This means that the fill
count must be computed as MAX(length(sink)-length(source),0) or

that the MOVM be skipped if the fill count is negative.

Since it 1is difficult to generate efficient code for character
moves and compares which are potentially overlapped and which
involve variable length operands, we recomﬁend that instructions
be added to Nebula to facilitate these operations. These

instructions should allow, at the very 1least, lengths and

addresses to be specified for the two operands. Additionally, it

is desirable to allow a first byte to be specified. Although the
first byte can be subsumed into the address calculation,
specifying it separately corresponds more closely to the JOVIAL
language usage, and allows more efficient coding of accesses to
subscripted character strings. JOVIAL only provides blank
filling, but it may be desirable to allow a f£ill character to be
specified, if such filling is supported at the source level by

other languages for which Nebula is to be used.
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Move characters (MOVCHS) should perform truncation or filling
with blanks on the right, as appropriate. The instruction should
provide for overlapped source and sink, and give the same
results, whether or not the two fields are overlapped. Since the
instruction execution time is potentially long, the instruction

should be interruptable.

Compare characters (COMCHS) should perform a comparison between
two character strings, as if the shortened had been blank padded
on the right to the length of the longer. Overlapping fields are

not an issue here.

Overlapped Move

The semantics of JOVIAL assignment require that the fact that the
source and the sink overlap not affect the assignment. This
means that unless the target computer performs overlapped moves
in a manner which is consistent with JOVIAL, or unless the
compiler can determine that overlap is impossible, it must
generate extra code. This code may take either of two forms:
l. The compiler may generate code to select the direction
of the move, or more simply,
2. The compiler may move the 8ink to a temporary, move the
source to the sink, and then move the temporary to the

source.
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'Alternatively, a subroutine call could be generated.

Since move block (MOVBK) is defined so that overlapping operands
do not affect the result, overlapped moves are not a .problem in
Nebula, provided that the operands are the same length, or are of
constant 1length. Recommendations for handling overlapped moves

are discussed above under "Character String Operations"”.

4.6 Bit strings

The maximum length of a JOVIAL bit string is MAXBITS, an
implementation parameter. Because MAXBITS determines the maximum
allowable size for table entries, any reasonable JOVIAL
implementation will choose MAXBITS to be significantly dgreater
than the number of bits in a word. This causes problems on many
machines because normally operations on bits are only supported
in the hardware for word-size or smaller operands. Although some
machines, such as the VAX, allow bit addresses to span word
boundaries, they normally do not support bit operations on bit

strings which are longer than a word.

A similar problem is presented by the bit function when it is
applied to large operands, unless it is known at compile time
that the number of bits is small. Code can usually be generated

in line for applications of the BIT function to operands which

I1-5.25
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are known to be contained in a word. The code sequences
generated for the BIT functions with a constant first bit and
number of bits are identical to those generated for part-word
operands. The sequences for variable first bits and number of
bits typically involve shifts or special extract or deposit

instructions if they are present in the hardware.

Nebula provides good support for BIT functions applied to word

size or smaller operands, or BIT functions whose first bit and
number of bits are such that the results are guaranteed to be

byte aligned and an integral number of bytes long. Support for

et

longer bit strings is only marginal, Although it would be

possible to generate code to perform long variable bit moves

inline, it most likely would not be done in practice, because the
code sequences would be.rather lengthy. It is 1likely that a
subroutine call would be generated. This would mean that there
would be a threshold size for bit strings, above which they were
more inefficient, Although it would be qonvenient for the
compiler to be able to generate code directly for the various
operators which can be applied to long bit strings, the payoff in
terms of efficiency in actual practice would be quite small,
except in those rare programs which made heavy use of those sorts
of operations. Rather than proposing that all instructions be

applicable to arbitrary bit operands, we suggest a more modest

addition to Nebula, namely long bit move and compare
instructions. The operation described here satisfies JOVIAL

semantics; support for other languages may require a

b
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generalization.

The proposed instruction "Move Bits" (MOVBTS) moves the contents
of one bit field to another, padding on the left with binary
zeros, or truncating on the left as appropriate. There are six
operands to this instruction; for each of the source and sink, a
pos, size and base are specified. These are calculated as in the
bit field instructions, but the size restriction is removed.
Since this means that the instruction potentially takes a 1long

time to execute, it must be interruptable,

Another proposed instruction "Compare Bits" (CMPBTS) compares two
bit strings. The shorter is padded on the left with zeros.
Although JOVIAL does not permit bit strings to be compared for
ordering (only equal and not equal are permitted), it would make
sense to define the comparison so that it sets the N flag bit if
the first operand is 1logically 1less than the second. This

instruction would have the same operands as MOVBTS.

4.7 Truncation and Rounding

JOVIAL contains requirements for truncation and rounding which
are not often supported in hardware. Users are allowed to
specify rounding or truncation towards zero or negative

infinity. The specifications may be associated with specific

11-5.27
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items of any numeric type (integer, fixed point or floating
point). Thus, all three types of conversions may appear in a

single program.

Most hardware does not support the three types of 1length
reduction called for by JOVIAL. Items which use the type
implemented in the hardware are handled efficiently. Subroutine

calls must often be generated for the operations which are not

directly supported.

Nebula provides good support with respect to the types of
rounding supplied; the three mentioned above are handled and

there is round toward positive infinity, in addition. However,

the type of rounding is determined by the flag bits in the
Auxiliary Status Register (ASR), and is not associated with the
result field as is required by the lanquage definition. The

desired results could be obtained, however, by altering the ASR

prior to storing the result., This would increase the size of the
code generated, though, and would tend to discourage heavy use of

rounding and truncation.

- We have several recommendations regarding ways to make Nebula
- truncation and rounding more usable for implementing JOVIAL.
First, the fixed point operations (MULFIX, DIVFIX and SCALE)
‘ should round or truncate in a manner consistent with the floating
L point operations. (This is to say, if the ASR is wused to

indicate whether rounding or truncation is to occur, then it

. 11-5.28
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should also be used for fixed point. However, it may be
advisable to have a separate set of bits to control fixed and
floating rounding and truncation. We will suggest alternative
methods below.) JOVIAL requires truncation toward zero and
negative infinity as well as rounding. Since truncation toward
positive infinity is included in Nebula for floating point

numbers, it should be allowed for fixed point, also.

Another recommendation is that there be a convenient way to

locally change the rounding. We have two suggestions as to how
this could be done; which one should be implemented depends
largely on the availability of op codes. From the JOVIAL point ' ::E§
of view, it is desirable to be able to specify the rounding and
truncation for each operation. For example, rather than just
having a move floating instruction, there would be mové floating ]i
and round, move floating and truncate to zero, etc. This would s

have to be done for all operations which required rounding or k{\i

truncation. The disadvantage of this approach is that the number
of such op codes is quadrupled (although JOVIAL would permit

rounding to positive infinity to be omitted).

Another approach which is not as efficient or esthetically

pleasing, but which is more conservative of op codes, is to allow =

N INE

,

a flag which specifies the type of rounding, preceding operations N

r
P

which perform rounding or truncation.

'
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which followed arithmetic operations, but this is 1less

satisfactory since precision may already have been lost.

4.8 Operand Sizing

JOVIAL programmers are allowed to specify sizes for items. This
implies that items in densely packed and specified tables must be
extracted before they can be used in computations. On most
machines support for such operations is limited, consisting of
shift and 1logical operations. The problems associated with
packed and speéified table items are discussed under "Part-word

operands”,

On byte-oriented machines it is common even for scalars to
require sizing if they are allocated to storage units smaller
than a word. The fact the JOVIAL associates sizes with data, but
machines generally associate them with operators, causes extra
code to be generated to convert all of the operands of a given

operator to a common length.

Nebula is much better than most machines with regard to allowing
operations to be performed on different sized operands, because
sizes are associated with operands, rather than with operators.
In the design, however there is one potential pitfall, which

applies to languages such as Ada as well as to JOVIAL, Consider
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the following statements:

S16 = U8 + S16;
S32 = U8 + S16;

Where S and U indicate the signedness of the operands and the
integers give their sizes. 1If the first addition is performed
using signed addition (ADD) and the value of U8 is greater than

127, U8 will be sign extended and the answer will be incorrect.

If unsigned addition (ADDU) is used, the correct answer, is RN
obtained for the first statement, but not the second if S16 is

negative, since S$16 will not be sign extended. L;«-.—?

One solution to this problem is to allocate two bytes for items QK
which are declared U 8, but this is wasteful of space. The )
"correct” solution would be to associate the sign with the

operand rather than the operator, but this would pose coding

problems for the operand specifiers.

4.9 Part-word operands

JOVIAL permits the user to specify part-word operands in
dense-packed and specified tables. These operands may be used in
any operations which are appropriate to their data type. Support

for such operands is typically quite limited. 1In very few cases

.
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is it possible to wuse such operands directly. (Compare field

(CMP) on the VAX is one example.) It is almost always necessary L*?fF!
to extract operands first. In addition, there is usually not :

very much hardware support with respect to extraction, which ";ﬁ
normally must be performed using various combinations of shifting i!;f;i

AN s gum 4
]

and masking instructions. Some machines, such as the VAX, do

have extract field instructions.

Nebula is better than most machines in this regard, although
part-word operands must still be treated specially. Support for i SR
% single bit operands is relatively good with clear, set, invert,
and test operations available, but there is no specific operation
for setting a single bit to a variable value. (Store bit field

(SBF) can be used, but it could have been used for clearing and

setting bits also,)

Support for operands whose size is bigger than a bit but smaller
than a word consists of the store bit field (SBF) and the 1load
bit field (LBF and LBFS) operators, and numerous instructions

which handle byte and two-byte operands.

Code for part-word operations on Nebula would be somewhat less
efficient than it could be, due to the fact that it is necessary

to load, compute and store rather than to perform the operation

directly to the target. Our recommendations for improvements in

B this regard are discussed below under "Operand Addressing”.
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4.10 Optimization

Although optimization is not required by the language
specification per se (with such exceptions as short circuit
evaluation of logical operators), the nature of the tasks for
which JOVIAL is used require code which 1is economical with

respect to both time and space.

The problems of generating good code are compounded by poor
machine support for high level language constructs, since special
cases require additional analysis by the optimizer or the code

generator.

Since Nebula is a relatively regqular architecture there are fewer
special cases than for most machines. There are a number of
machine features which do require extra analysis, if the
optimizer is to take advantage of them. The two most important
are the three-operand operators and the 1large number of

addressing modes.

Three-operand operators make it easy to generate code for

statements like:

A =B op C;

in the absence of common subexpressions. However, when common

subexpressions are to be considered, the optimizer must decide
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- whether it is better to compute the value in a register (or temp) " e
: or to compute it directly into A, On a machine where all ?“?ﬁf’
. computations must be done in registers, this is not an issue. 2 fjll
s RS

The large number of addressing modes in Nebula provide additional ;V’_:!

opportunities for optimization. Since it 1is possible to save ':‘.'“f

three bytes each time a byte offset is used in place of a word
offset, it behooves the optimizer, not 3Jjust to use short
addresses where they happen to occur, but also to create

additional opportunities by lonading base registers.

Again, this is a feature which can be ignored by any compiler
which chooses to do so, but which can allow a considerable saving

to be made in terms of program size.

4.11 General Machine Idiosyncracies

-

Many instruction sets, particularly those for older machines were

apparently designed with insufficient regard for generating code IR

for high level languages including JOVIAL, The architectures
contain numerous examples of instructions which do not correspond

well to operations in high level languages.

Machine idiosyncracies take a variety of forms. One of the most

common, and one which complicates code generation considerably is

g
:
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inconsistent use of registers. Most machines with index
registers do not allow register zero to be used for indexing.
Other machines have requirements for the use of double registers

or register pairs for certain instructions, typically

multiplication and division, Other machines require that
specific registers be 1loaded prior to the execution of certain
instructions. These peculiarities make it more difficult to

generate good code.

Another common irregqularity is the restriction of addressing
modes for certain types of instructions. Examples of this are
&i Move character (MVC) on the IBM 370 (only a single register may
a be used) and the double precision instructions on the
& MIL-STD-1750A (only register and direct addressing are allowed).

Hl For a more complete discussion of this issue see [Wulf8l].

Nebula is less idiosyncratic than most architectures, but is not
perfect in this regard. Some operators such as XOR, MOD and REM

appear only in the three address form while other similar

operators such as AND, OR and DIV appear in two and three operand

= forms. This requires that these operators be treated specially

r: by the compiler, but does not have a noticable effect on the
lj JOVIAL programmer. We recommend that, unless there is a severe
- shortage of op codes (which doesn't appear to be the caée with
; . less than 128 presently assigned) that both the two and three

operand variations be allowed for XOR, MOD, and REM.
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Increment and decrement are not symmetrical. It is possible to

increment by 1, 2, 4 or 8 but only to decrement by 1.

Procedure descriptions are required to be word aligned. This

causes extra work for the compiler and linker.

The effect of moving 64-bit items to registers is not clearly
specified in the Nebula definition. Section 5.4 states that
"register operands shall be word (32 bit) size". This would seem
to indicate that 64-bit operands either cannot be moved to
registers, are truncated to 32 bits, or require two registers.
Any of these alternatives would require special handling for such
operands; this would complicate the compiler, We recommend
defining the register set so that, as a minimum, 64-bit floating

point operands can be loaded.

4.12 Relationals in value contexts

Relational operators may appear in boolean expressions in either
flow of control or value context (i.e., when a relational
operator appears in an assignment statement). Normally, there is
good support for the flow of control case and it is possible to
generate efficient code for 1IF statements, However, most
machines do not provide good support if the value of the boolean

needs to be generated, as in a boolean assignment.
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JOVIAL introduces an additional complication in that it requires
that a single bit logical expression be computed using short
circuit evaluation. The way this is achieved for most

architectures is to translate a statement like:

A=B=CorD=E;

as if it had been written:

T = 1B'l"';

if B = C; goto 1;
if D=E; goto 1;
t=1B '0';

l: A =T;

Nebula offers a means for converting condition codes to boolean
values, This makes it simpler to generate code for single

boolean assignments such as:

Eowever, not much help is provided for the more complicated cases

like the one shown above.
These difficulties are more the result of the language

definition, than of Nebula. For this reason we recommend no

change with respect to the short circuit evaluation.
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4.13 Case

Many architectures furnish no special support for the case

statement. This is not a big problem for integer selection,

because ordinary conditional and indexed branches are sufficient o
to implement case statements without an unreasonable loss of ;1i35
efficiency. JOVIAL also allows character and bit type ;?E;E
selectors. These present more of a problem, since the range of '*:;;

possible values may be too great to allow the use of an indexed SRR

t jump.

Mebula's case operator provides gqood support for CASE's with T

integer and status selectors.,

4.14 Loops

Although a number of machines provide some degree of support for
loops, JOVIAL loop statements often do not map easily onto the

instructions which are intended to provide this support.

One common problem is presented by "increment (decrement) and

branch®™ type instructions. Normally, the decision on whether to

A branch is made based on a comparison of the counter with =zero.
u- Unless the termination condition can be mapped into a test
5 : against zero, these special instructions are not usable.

.
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Another problem is that loop instructions are often applicable
only to testing at the bottom of a loop, (ala FORTRAN), since
they are of the form "increment (decrement) and branch". JOVIAL
semantics require that the condition be tested before the loop is
executed for the first time. The compiler can move the test to
the bottom of the loop if the loop is known to be executed at
least once (as indicated by constant bounds), but if the loop
bounds are variable, either an extra test must be generated, or
else the increment must be subtracted from the initial value so
that when the special instruction adds the increment, the correct

initial value will be checked against the limit,

JOVIAL presents several additional complications. One 1is that
there are a number of rather general forms of loops. The WHILE
loop is more or less standard ahd presents no particular problems
as far as implementation is concerned. The FOR loop which uses a
counter (BY phrase in JOVIAL) has a more general termination
condition than is normally encountered. Any boolean formula may
be used as the termination condition; the condition is not
limited to the relation between the 1loop variable and some
numeric value. Thus, even those machine instructions which allow

the loop variable to be tested against an arbitrary value do not

support JOVIAL 1loops in their full generality. JOVIAL has
another form of FOR loop which is relatively uncommon. The THEN
‘ clause specifies an expression which is to be reevaluated and
assigned to the loop variable at the end of each iteration

through the loop. We are unaware of any loop instructions which
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support this construct, and it 1is unlikely that special

instructions would be particularly helpful.

Another minor complication is that JOVIAL defines the value of

the loop variable outside the 1loop in cases where the 1loop ;“ﬂﬂ!
variable is declared explicitly. This means that machines which .k‘:;f
suppress the increment at loop termination will not conform to ;j ﬂ$
JOVIAL 1loop semantics unless additional code is generated by the - | 2
compiler. o ’

Nebula provides somewhat better support for 1loops than most
architectures do, chiefly because the increment (decrement) and
branch and the loop instruction allow 1limits to be specified.

These instructions do, however, give an incorrect (according to

JOVIAL semantics) value for the loop variable upon exit from the
loop. A This would require either an extra instruction to add the
increment once more, or analysis by the compiler to ascertain
whether the loop variable's value was required subsequently. The
remarks about checking for loop termination at the top and bottom

of the loop apply to Nebula, also.

We recommend that the loop instructions be modified so that the
loop counter is incremented, regardless of the outcome of the

test against the limit.
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4.15 Tight tables

Tight tables (those with multiple entries per word) are usually
poorly supported by target hardware. On a typical machine, it is
necessary to perform a division of the subscript by the number of
entries per word in order to obtain the number of the word which
contains the entry and the number of the entry within that word.
Then, the appropriate entry must be extracted from the word using

one of several possible extraction sequences (see part word

data).

Nebula provides good support (load bit field instructions LBF and
LBFS) for the extraction itself;,; but less support for the address
calculation., In fact, the support for the address calculation
itself is slightly worse than that found on most machines,
because division and remainder are separate instructions, whereas

it is common for integer division to produce both a quotient and

a remainder.

It is unfortunate that the language requires an integral number
of entries per word, since it is easier to generate code for
Nebulez when the word boundaries are ignored. 1In such a case, the

load bit field operations would be sufficient,
Nebula does provide good support £for tight tables when an

integral number of entries fit exactly in a word, because the

load bit field operations allow full sized integers for the "pos"

I1-5.41
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operand. In this case, the pos may be computed as
entry-number * bits-per-entry

and the extract done directly.

For this reason, it may be to the JOVIAL programmer's advantage
to define tight tables so that an integral number of entries fill

a word exactly.

4,16 Star tables

Formal parameter tables with variable bounds (star tables) are

not often well-supported by hardware. These tables pose problems

for severai reasons. First, address computation is more
Géifficult because the lower bounds must be subtracted from the
subscripts at execution time. Also, star tables which are passed
BYVAL or BYRES require the allocation of an object whose size is

not known until execution time.

4.17 Fixed Point Arithmetic

- Fixed point arithmetic often presents problems due to inadequate
-

K; hardware support. Difficulties arise both because there is no
FE direct support for fixed point and because the primitives
"
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provided do not match language requirements. Two of the most
common problems are loss of precision and scaling. Precision may
be lost if ordinary integer arithmetic is used for fixed point
operations. This is particularly true for division, because
integer divide instructions often produce just a single precision
quotient. Scaling is often inefficient because "arithmetic"
shifts often do not produce arithmetic results, On two's
complement machines right shift is not equivalent to division by
a power of two for negative numbers, and on one‘'s complement
machines left 'arithmetig' shift is not equivalent to

multiplication by a power of two.

The definition of MULFIX and DIVFIX are somewhat imprecise in
that no indication is given as to whether bits may be lost in the
shifting process. If it is possible for bits of the product or
dividend to be lost due to shifting apd before the final result
is stored, these instructions may not be usable in all cases. If
the instructions are equivalent to infinite precision operations
with truncation at the storing of the final result, Nebula
provides good support for fixed point arithmetic oéerations. We
assume that this is the intention of Nebula, since Ada has
essentially the same requirements. Integer addition and
subtraction and fixed point multiplication and division can be

used for the four basic operations.

The one area in which Nebula is weak is in regard to truncation

and rounding. Since integer and floating point operands are also
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affected, truncation and rounding are discussed in a separate

section. 'ff\
;”;;;
2wl
4.18 Data Allocation R

JOVIAL is very much a word-oriented language. Tables may be
defined in terms of words per entry, items in specified tables
start at a given bit within a wqrd, and tight tables are

allocated with an integral number of entries per word.

Because JOVIAL is word-oriented, there are sometimes problems
mapping 1language constructs onto a machine architecture. One
ccemmon problem arises when machines start the low order byte of
integers in the byte with the lowest address. In such cases,
characters run from the most significant character to the least
significant, in order of increasing address, but integers go from
least significance to greatest. This is contrary to the
assumptions which JOVIAL makes about the ordering of bits and
characters within a word. This can affect the efficiency of
accessing bit strings; for character strings it may be necessary
to represent values in machine dependent format, which may cause

transported programs to fail.

One machine for which this is the case is the VAX. It provides

instructions for handling integers, characters and bits, but in
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order for an implementation to correspond to the rules of JOVIAL,
it cannot take advantage of the hardware to its fullest extent.
One would like to be able to use the character move instructions
for character strings; that implies using the hardware character
allocation scheme<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>